

GE Fanuc Automation

Computer Numerical Control Products

AC Spindle Motor Series (Serial Interface)

Descriptions Manual (Volume 2 of 4)

GFZ-65042E/05

January 1994

Warnings, Cautions, and Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

©Copyright 1994 GE Fanuc Automation North America, Inc. All Rights Reserved. This manual (B-65042E) is composed of the following 4 volumes.

 $V \circ 1$. 1

- I. AC SPINDLE MOTOR S series GENERAL/FEATURES/SPECIFICATIONS/OUTPUT AND TORQUE CHARACTERISTICS/ CONFIGURATION AND ORDER DRAWING NUMBER/CONNECTIONS/ ALLOWABLE RADIAL LOAD/ ASSEMBLING ACCURACY/EXTERNAL DIMENSIONS
- II. AC SPINDLE MOTOR P series GENERAL/FEATURES/SPECIFICATIONS/OUTPUT AND TORQUE CHARACTERISTICS/ ORDER DRAWING NUMBER/CONNECTIONS/ALLOWABLE RADIAL LOAD/ ASSEMBLING ACCURACY/EXTERNAL DIMENSIONS
- II. AC SPINDLE MOTOR VH series (LIQUID-COOLED) GENERAL/ FEATURES/ SPECIFICATIONS/ OUTPUT AND TORQUE CHARACTERISTICS/ ORDER SPECIFICATIONS/ CAUTIONS IN USE/ ASSEMBLING ACCURACY/ EXTERNAL DIMENSIONS
- IV. AC SPINDLE MOTOR HV series (380/415 VAC INPUT) GENERAL/ FEATURES/ SPECIFICATIONS/ OUTPUT AND TORQUE CHARACTERISTICS/ CONFIGURATION AND ORDER SPECIFICATIONS/ CONNECTION/ ALLOWABLE RADIAL LOAD/ ASSEMBLING ACCURACY/ EXTERNAL DIMENSIONS
- V. LIQUID-COOLED AC SPINDLE MOTOR series NON HOLLOW SHAFT AND WITHOUT SPEED RANGE SWITCHING TYPE/ OUTLINE/ FEATURES/ SPECIFICATIONS/ CONFIGURATION AND ORDER DRAWING NUMBER/ CONNECTIONS/ CAUTIONS IN USE/ OUTLINE DRAWING OF MOTOR/ HOLLOW SHAFT AND WITH SPEED RANGE SWITCHING TYPE/ OUTLINE/ FEATURES/ SPECIFICATION/ CONFIGURATION AND ORDER SPECIFICATION DRAWING NUMBER/ CONNECTIONS/ CAUTIONS IN USE/ OUTLINE DRAWING OF MOTOR/

VI. IP65 series

FEATURES/ SPECIFICATIONS/ CHARACTERISTIC/ EXTERNAL DIMENSIONS/ LOAD METER/ ORDER SPECIFICATION DWG NO.

$V \circ 1$. 2

- VI. AC SPINDLE SERVO UNIT SERIAL INTERFACE S series GENERAL/ FEATURES/ CONFIGURATION AND DRAWING NUMBER/ SPECIFICATIONS AND FUNCTIONS/ INSTALLATION/ UNIT CALORIFIC VALUE/ COOLING/ EXTERNAL DIMENSIONS AND MAINTENANCE AREA/ CONNECTION/ INTERFACE SIGNALS
- VII. AC SPINDLE SERVO UNIT HV series GENERAL/FEATURES/SPECIFICATIONS/CONFIGURATION AND ORDER SPECIFICATIONS/ INSTALLATION/OLING/EXTERNAL DIMENSIONS AND SERVICE CLEARANCE/ CONNECTION/CAUTION IN USE
- IX. POSITION CODER METHOD SPINDLE ORIENTATION GENERAL/ FEATURES/ CONFIGURATION AND ORDER DRAWING NUMBER/ SPECIFICATIONS/ CONNECTION/ SIGNAL EXPLANATION/ POSITION CODER
- X. MAGNETIC SENSOR METHOD SPINDLE ORIENTATION GENERAL/ FEATURES/ CONFIGURATION AND ORDER DRAWING NUMBER/ SPECIFICATIONS/ CONNECTION/ SIGNAL EXPLANATION/ MAGNETIC SENSOR/ TWO-MAGNETIC SENSOR ORIENTATION

V o 1. 3

XI. SPINDLE ORIENTATION WITH 1-REVOLUTION SIGNAL SWITCH GENERAL/ SYSTEM CONFIGURATION/ SPECIFICATIONS/ CONTROL SEQUENCE/ PMC SIGNAL (DI, DO SIGNAL)/ PARAMETERS/ CABLE CONNECTION/ SPECIFICATIONS OF REFERENCE SWITCH/ SETTING PINS (SH8 to 10)/ MOUNTING DIAGRAM OF SETTING PINS, CHECK PINS AND VARIABLE RESISTORS/ NOTES

- XII. BUILT-IN SENSOR SIGNAL CONVERSION CIRCUIT GENERAL/ FEATURES/ CONFIGURATION/ SPECIFICATIONS/ EXTERNAL DIMENSIONS/ CABLE ROUTING DIAGRAM/ EXAMPLE OF INSTALLATION/ CONNECTION/ CABLES/ CAUTIONS IN USE
- XII. HIGH RESOLUTION MAGNETIC PULSE CODER GENERAL/ SYSTEM CONFIGURATION/ SPECIFICATION METHOD/ SPECIFICATION/ CONNECTIONS/ DIMENSIONS/ CHECKING OUTPUT WAVEFORM AND ADJUSTING THE PREAMPLIFIER SENSOR AND PREAMPLIFIER FITTING DIAGRAMS/ SENSOR FITTING PROCEDURE
- XIV. HIGH-RESOLUTION POSITION CODER GENERAL/ FEATURES/ SYSTEM CONFIGURATION/ SPECIFICATIONS/ CONNECTION/ SHAPE/ INSTALLATION CONDITION AND CAUTIONS
- XV. SPEED RANGE SWITHING CONTROL GENERAL/ CONFIGURATION AND DRAWING NUMBER/ SPECIFICATIONS/ CONNECTIONS/ INTERFACE SIGNALS/ SEQUENCE/ ALARMS RELATED TO SPEED RANGE SWITCHING CONTROL/ CAUTIONS IN USE
- XVI. SPINDEL SWITCHING CONTROL GENERAL/ FUNCTIONS/ RESTRICTIONS/ CONFIGURATION AND ORDERING DRAWING NUMBERS/ EXTERNAL DIMENSIONS OF SPINDLE SWITCHING CONTROL CIRCUIT/ CONNECTION/ PARAMETERS/ SPINDLE CONTROL SIGNALS/ SEQUENCE/ ALARMS RELATED TO SPINDLE SELECTOR CONTROL/ CAUTIONS IN USE
- XVI. SWITCHING UNIT

GENERAL/ CONFIGURATION/ ORDER DRAWING NUMBER/ SPECIFICATIONS/ EXTERNAL DIMENSIONS AND DIMENSIONS FOR MOUNTING/ CONNECTION/ CAUTIONS IN USE XVII. DIFFERENTIAL SPEED CONTROL FUNCTION DESCRIPTION OUTLINE/ CHARCTERISTIC/ CONFIGURATION AND ORDER DRAWING NUMBER/ SPECIFICATION OF POSITION CODER SIGNAL INPUT CIRCUIT/ INPUT AND OUTPUT SIGNAL EXPLANATION/ POSITION CODER SIGNAL INPUT CIRCUIT (OPTION) EXTERNAL DRAWING/ CONNECTION/ CONNECTION DETAIL DRAWING/ JUMPER EXPLANATION

V o 1.4

APPENDIX

CABLE SPECIFICATIONS/ TECHNICAL DATA/ SERIAL SPINDLE START-UP PROCEDURE/ METHOD FOR OPERATIING THE SPINDLE MOTOR USING A SERIAL SPINDLE AMPLIFIER INSTEAD OF THE CNC/ MONITORING INTERNAL DATA OF THE SERIAL SPINDLE/ GROUNDING/ CUSTOMER RECORDS

PREFACE

The models covered by this manual, and their abbreviations are:

Series name	Model name
FANUC AC SPINDLE MOTOR S series	0.5S, 1S, 1.5S, 2S, 3S, 6S, 8S, 12S, 15S, 18S, 22S, 30S, 40S
FANUC AC SPINDLE MOTOR Power up series	8P, 10P, 12P, 15P, 16P, 18P, 22P, 30P, 40P, 50P, 60P
FANUC AC SPINDLE MOTOR High-speed series	6VH, 8VH, 12VH
FANUC AC SPINDLE MOTOR 380/415V series	30HV, 40HV, 60HV
FANUC AC SPINDLE MOTOR LTQUID-COOLED series	 Non hollow shaft/without speed range switching type L6/12000, L12/6000, L15/6000, L18/6000, L22/6000
	 Hollow shaft/with speed range switching type L12/10000, L15/10000, L22/10000, L26/10000, L40/8000, L50/8000
FANUC AC SPINDLE MOTOR IP65 series	1S, 1.5S, 2S, 3S

CONTENTS

I.	AC	SP	IND	LE	MOT	OR	S	series
----	----	----	-----	----	-----	----	---	--------

1.	GENERAL	1 – 1
2.	FEATURES	1 – 1
3.	SPECIFICATIONS	1 – 2
4.	OUTPUT/TORQUE CHARACTERISTICS	1 – 4
5.	CONFIGURATION AND ORDER DRAWING NUMBER	
	5.2 Order Drawing Number	
6.		1 – 15
	6.1 Model 0.5S	1 – 15
	6.2 Models 1S - 40S	1 – 16
7.	ALLOWABLE RADIAL LOAD	1 – 18
8.	ASSEMBLING ACCURACY (T.I.R: Total Indicator Reading)	1 – 19
9.	EXTERNAL DIMENSIONS	1 – 20
	9.1 AC Spindle Motor Model 0.5S	1 – 20
	9.2 AC Spindle Motor Model 1S	1 - 21
	9.3 AC Spindle Motor Model 1.5S	1 – 22
	9.4 AC Spindle Motor Model 2S	1 – 23
	9.5 AC Spindle Motor Model 3S	1 – 24
	9.6 AC Spindle Motor Model 6S	1 – 25
	9.7 AC Spindle Motor Model 8S	1 – 26
	9.8 AC Spindle Motor Models 12S, 15S	1 – 27
	9.9 AC Spindle Motor Models 18S, 22S	1 – 28
	9.10 AC Spindle Motor Models 30S, 40S (30S/6000, 40S/6000)	1 – 29
	9.11 AC Spindle Motor Model 1S/15000	1 – 30
	9.12 AC Spindle Motor Model 2S/15000	1 – 30
	9.13 AC Spindle Motor Model 3S/12000	1-31
	9.14 AC Spindle Motor Model 6S/12000	1 - 31
	9.15 AC Spindle Motor Model 8S/8000	1 – 32
	9.16 AC Spindle Motor Models 12S/8000, 15S/8000	1 - 32

	9.18 AC Spindle Motors with a Built-in High-resolution Magnetic Pulse Coder	1 – 33
II.	AC SPINDLE MOTOR P series	
1.	GENERAL	2-1
2.	FEATURES	2-1
3.	SPECIFICATIONS	2-2
4.	OUTPUT/TORQUE CHARACTERISTICS 4.1 Without Speed Range Swithing Type 4.2 With Speed Range Swithing Type	2-5
5.	ORDER DRAWING NUMBER	2-11
6.	CONNECTIONS	2 – 17
7.	ALLOWABLE RADIAL LOAD	2 - 18
8.	ASSEMBLING ACCURACY (T.I.R: Total Indicator Reading)	2 – 19
9.	9.6 AC Spindle Motor Model 50P 9.7 AC Spindle Motor Model 16P, 16P/8000	2 - 20 2 - 21 2 - 22 2 - 23 2 - 24 2 - 25 2 - 26 2 - 27 2 - 28
III.	AC SPINDLE MOTOR VH series (LIQUID-COOLED)	
1.	GENERAL	3 – 1
2.	FEATURES	3 – 1
3.	SPECIFICATIONS	3 - 2
4.	OUTPUT/TORQUE CHARACTERISTICS	3 – 4
5.	ORDER SPECIFICATIONS	3 – 5
6.	CAUTIONS IN USE	3-6

	6.1 Piping of Cooling Oil 6.1.1 Factory-set piping	
	6.1.2 Piping block (for reference)	
	6.1.3 Piping (for reference)	
	6.2 Motor Cooling Conditions	
	6.3 Oil-Air Lubrication Conditions	
		0 0
7.	ASSEMBLING ACCURACY (T.I.R: Total Indicator Reading)	3–10
8.	EXTERNAL DIMENSIONS	3-11
	8.1 AC Spindle Motor Model 6VH	3 - 11
	8.2 AC Spindle Motor Model 8VH	3-11
	8.3 AC Spindle Motor Model 12VH	3 - 12
IV	7. AC SPINDLE MOTOR HV series (380/415 VAC INPUT)	
1.	GENERAL	4 – 1
2.	FEATURES	4 – 1
З.	SPECIFICATIONS	4-2
4.	OUTPUT/TORQUE CHARACTERISTICS	4 – 3
5.	CONFIGURATION AND ORDER SPECIFICATIONS	4 – 4
	5.1 Configuration	4 – 4
	5.2 Order Specifications	4-5
6.		4-6
7.	ALLOWABLE RADIAL LOAD	4 - 7
8.	ASSEMBLING ACCURACY (T.I.R: Total Indicator Reading)	4 - 8
9.	EXTERNAL DIMENSIONS	4-9
	9.1 AC Spindle Motor Model 30HV/40HV (Flange Mounting)	4-9
	9.2 AC Spindle Motor Model 30HV/40HV (Foot Mounting)	4-9
	9.3 AC Spindle Motor Model 30HV/40HV	-
	(Footed-Flange/Output Shaft Conforming to DIN Standard)	4 - 10
	-	4 - 10
	9.5 AC Spindle Motor Model 60HV	4 - 11
	9.6 AC Spindle Motor Model 60HV (Foot Mounting)	4 - 11
		7 11
V .	LIQUID-COOLED AC SPINDLE MOTOR series	

	1.1	Outline		5 – 1
	1.2	Featur	e	5 - 1
	1.3	Specif	ications	5 – 2
		1.3.1	Non hollow shaft without speed range switching type	5 – 2
		1.3.2	Outputs and torque characteristics	5-3
			1.3.2.1 Model L6/12000 (without speed range switching type)	5 – 3
			1.3.2.2 Model L12/6000 (without speed range switching type)	5 - 4
			1.3.2.3 Model L15/6000 (without speed range switching type)	5 – 5
			1.3.2.4 Model L18/6000 (without speed range switching type)	5 - 6
			1.3.2.5 Model L22/6000 (without speed range switching type)	
	1.4	Config	uration and Order Drawing Number	5 – 8
		1.4.1	Configuration	
		1.4.2	Order drawing number	
	1.5	Conne	ctions	5 – 8
		1.5.1	Power cable size	5 - 8
		1.5.2	Connection of signal cable	
	1.6	Cautior	ns in Use	5-11
		1.6.1	Piping of cooling oil	5 - 11
			1.6.1.1 State in shipment	5 – 11
			1.6.1.2 Example of piping block	5 - 12
			1.6.1.3 Piping example	5 - 13
		1.6.2	Motor cooling condition	5 - 14
		1.6.3	Allowable radial load	5-14
		1.6.4	Assembly accuracy	5 - 15
		1.6.5	Utilization limitation of eye bolt	5 - 15
	1.7	Outline	Drawing of Motor	5 - 16
		1.7.1	Model L6/12000 (Non hollow shaft)	5 - 16
		1.7.2	Model L12/6000, L15/6000 (Non hollow shaft)	5 - 16
		1.7.3	Model L18/6000, L22/6000 (Non hollow shaft)	5 - 17
2.	HOLL	OW SH	AFT/WITH SPEED RANGE SWITCHING TYPE	5 - 18
	2.1	Outline		5 – 18
	2.2	Feature		5 - 18
	2.3	Specific		5 – 19
		2.3.1	List of specification (Hollow shaft/with speed range switching type)	5 – 19
		2.3.2	Output and torque character	5 - 21
			2.3.2.1 Model L12/10000 (with speed range switching type)	5 - 21
			2.3.2.2 Model L15/10000 (with speed range switching type)	5 - 22
			2.3.2.3 Model L22/10000 (with speed range switching type)	5 – 23
			2.3.2.4 Model L26/10000 (with speed range switching type)	5 - 24
			2.3.2.5 Model L40/8000 (with speed range switching type)	5 - 25
			2.3.2.6 Model L50/8000 (with speed range switching type)	5 - 26
	2.4	Confiau	Ination and Order Specification Drawing Number	5 - 27
		2.4.1		5 - 27
		2.4.2	Order specification drawing number	5 - 27
	2.5		stions	5 - 28

		2.5.1	Connection diagram	5 - 28
		2.5.2	Power cable size	5 - 29
		2.5.3	Magnetic-contactor for switching	5 – 29
		2.5.4	Connection of signal cable	5 - 30
	2.6	Cautio	ns in Use	5-31
		2.6.1	Piping of cooling oil	5-31
			2.6.1.1 State in shipment	5 - 31
			2.6.1.2 Example of piping block	5 - 32
			2.6.1.3 Piping example	5 – 33
		2.6.2	Motor cooling condition	5 - 34
		2.6.3	Connection with machine	5 – 34
		2.6.4	Assembly accuracy	5 - 36
		2.6.5	Utilization limitation of eye bolt	5 - 36
		2.6.6	Connection with through hole	5 - 37
	2.7	Outline	Drawing of Motor	5 – 38
		2.7.1	Model L12/10000, L15/10000 (Hollow shaft)	5 – 38
		2.7.2	Model L22/10000 (Hollow shaft)	5 - 38
		2.7.3	Model L26/10000 (Hollow shaft)	5 – 39
		2.7.4	Model L40/8000 (Hollow shaft)	5 - 39
		2.7.5	Model L50/8000 (Hollow shaft)	5 – 40
1.	FEATU			
٤.			DNS	
			ndle Servo Unit (Serial Spindle)	
				6 – 3
3.	CHAR	ACTERI	STIC	6 - 4
4.	EXTER	RNAL DI	MENSIONS	6-6
			/8000 B100, B190	
	4.2	IP65 1.5	S/8000 B100, B190	6 – 6
	4.3	IP65 2S	/8000 B100, B190	6 – 7
	4.4	IP65 3S	/6000 B100, B190	6 – 7
5.			•••••••••••••••••••••••••••••••••••••••	
6.	ORDE	R SPEC	IFICATION DWG NO	6 - 9
VI	I. AC S	PINDLE	SERVO UNIT SERIAL INTERFACE S series	
1.	GENEF	RAL		7 – 1
2.	FEATU	RES .		7 – 2

3.	CON	IFIGUR	ATION AND ORDER DRAWING NUMBER	7 – 4
	3.1		els 1S - 40S	
	3.2	Order	r Drawing Number	7 – 5
4.	SPE	CIFICAT	TIONS AND FUNCTIONS	7 – 9
	4.1		fications	
	4.2		Component Functions and Application	7 - 12
		4.2.1	Spindle control unit	7 - 12
		4.2.2	Fuse	7 - 19
		4.2.3	Power transformer (optional)	7 - 19
		4.2.4	Unit adapter	7 - 22
		4.2.5	Fan unit (This unit is an option for models 30S and 40S.)	7 - 22
5.	INST		ON	7 – 23
0.	5.1		pnemental Conditions	7 - 23
	•••	5.1.1	Ambient temperature	7 – 23
		5.1.2	Humidity	7 - 23
		5.1.3	Vibration	7 - 23
		5.1.4	Atmosphere	7 - 23
	5.2		Power and Grounding	7 - 23
	5.3		ction against Overcurrent	7 - 25
				7-25
6.	UNIT	CALOF	RIFIC VALUE	7 – 26
7.	coo	LING .		7 - 27
	7.1	Coolin	g the AC Spindle Servo Unit	7 - 27
		7.1.1	Models 1S - 3S, small type 6S	7 - 27
		7.1.2	Models 6S - 22S	7 – 27
		7.1.3	Small model 15S	7 - 27
		7.1.4	Model 26S, small type 30S	7 - 28
		7.1.5	Models 30S and 40S	7 – 33
•				
8.				7 - 34
	8.1		al Dimensions	7 – 34
		8.1.1	AC spindle servo unit models 1S - 3S, small type model 6S	
			(with an option)	7 - 34
		8.1.2	AC spindle servo unit models 6S - 12S, small type model 15S	
			(with unit adaptor)	7 - 35
		8.1.3	AC spindle servo unit models 6S - 12S, small type model 15S	
		8.1.4	(without unit adaptor)	7 - 36
		0.1.4	AC spindle servo unit models 15S - 22S, 26S, small type model 30S (with unit adaptor)	7 07
		8.1.5	(with unit adaptor)AC spindle servo unit models 15S - 26S, small type model 30S	7 – 37
			(without unit adaptor)	7 20
		8.1.6		7 – 38 7 – 39
		8.1.7		7 – 39 7 – 39
				1 - 33

	8.1.8	Unit adapter models 6S - 12S	
		(Order Spec. DWG No.: A06B-6059-K031)	7 – 40
	8.1.9	Unit adapter small type model 15S	
		(Order Spec. DWG No.: A06B-6059-K033)	7 - 41
	8.1.10	Unit adapter models 15S - 22S	
		(Order Spec. DWG No.: A06B-6059-K032)	7 - 42
	8.1.11	Unit adapter model 26S, small type model 30S	
		(Order Spec. DWG No.: A06B-6059-K038)	7 - 43
	8.1.12	Power transformer for models 1S - 3S	
		(Order Spec. DWG No.: A06B-6052-J001)	7 - 44
	8.1.13	Power transformer for models 6S, 8S, small type model 6S	
		(Order Spec. DWG No.: A06B-6044-J006)	7 - 45
	8.1.14	Power transformer for models 12S, 15S, small type model 15S	
		(Order Spec. DWG No.: A06B-6044-J007)	7 - 46
	8.1.15	Power transformer for models 18S, 22S, 26S	
		(Order Spec. DWG No.: A06B-6044-J010)	7 - 47
	8.1.16	Power transformer for small type model 30S, models 30S, 40S	
		(Order Spec. DWG No.: A06B-6044-J015)	7 - 48
	8.1.17	Fan unit for models 30S, 40S	
		(Order Spec. DWG No.: A06B-6044-K040)	7 - 49
8.2	Mainter	nance Area	7 – 50
	8.2.1	AC spindle servo unit models 1S - 3S, small type model 6S	
		(with an optional PCB)	7 – 50
	8.2.2	AC spindle servo unit models 6S - 12S, small type model 15S	
		(with unit adapter)	7 - 51
	8.2.3	AC spindle servo unit models 6S - 12S, small type model 15S	
		(without unit adapter)	7 - 52
	8.2.4	AC spindle servo unit models 15S - 22S, 26S, small type model 30S	
		(with unit adapter)	7 – 53
	8.2.5	AC spindle servo unit models 15S - 26S, small type model 30S	
		(without unit adapter)	7 - 54
	8.2.6	AC spindle servo unit models 30S, 40S	7 - 55
8.3	Panel H	Hole Machining Diagram and Mounting	7 – 56
	8.3.1	AC spindle servo unit models 1S - 3S, small type model 6S	7 - 56
	8.3.2	AC spindle servo unit models 6S - 12S, small type model 15S	7 – 57
	8.3.3	AC spindle servo unit models 15S - 26S, small type model 30S	7 – 58
	8.3.4	AC spindle servo unit model 30S (with fan unit)	7 - 59
	8.3.5	AC spindle servo unit model 40S (with fan unit)	7 – 60
8.4	Cautior	ns for Mounting	7-61
	8.4.1	Cautions for mounting a unit for models 30S and 40S	7 - 61
8.5	Sealing		7 – 61
	8.5.1	AC spindle servo unit models 1S - 3S, small type model 6S	7-61
	8.5.2	AC spindle servo unit models 6S - 26S, small type models 15S, 30S	7 – 61
	8.5.3	AC spindle servo unit models 30S, 40S	7 - 61
8.6	Conside	eration to Inlet and Outlet Ports	7 - 63
	8.6.1	AC spindle servo unit models 1S - 3S, small type model 6S	7 - 63

9.	CON	NECTIO)N	7 – 64
	9.1	Conne	ection Diagram	7 – 64
		9.1.1	Motor model 0.5S (Amplifier model 1S)	7 - 64
		9.1.2	Motor models 1S - 3S, small type model 6S	7 - 64
		9.1.3	Motor models 6S - 26S, small type model 15S, small type model 30S	7 – 65
		9.1.4	Motor models 30S, 40S	7 – 65
		9.1.5	Connection between the CNC and AC spindle servo unit	7 – 66
	9.2	Cable	Routing	7 – 67
		9.2.1	Cable routing diagram of models 1S - 3S, small type model 6S	7 – 67
		9.2.2	Cable routing diagram of models 6S - 12S, small type model 15S	7 – 68
		9.2.3	Cable routing diagram of models 15S - 26S, small type model 30S	7 – 69
		9.2.4	Cable routing diagram of models 30S, 40S	7 – 70
	9.3	Detaile	d Connection Diagram	7 – 71
		9.3.1	Connection of power source	7 - 71
		9.3.2	Connection of AC spindle servo unit and magnetics cabinet	
		9.3.3	Connecting AC spindle servo unit with unit adapter	
			(models 6S - 26S, small type model 15S, small type model 30S)	7 - 74
		9.3.4	Connection diagram of AC spindle servo unit and fan unit	
			(Models 30S, 40S)	7 – 75
		9.3.5	Connection of AC spindle servo unit and AC spindle motor	
	9.4	Cable		7 – 79
		9.4.1	Details of cable K4	
		9.4.2	Cable length	7 – 81
10.	INTER	RFACE S	SIGNALS	7 – 82
	10.1	Emerge	ency Stop Signals (ESP1, ESP2) - Contact Input Signal	7 - 82
	10.2	Signals	for Checking the Contact of the Magnetic Contactor	
		in the S	Spindle Amplifier (VIN, PC24V, and PC0V) for models 1S to 26S	7 – 83
	10.3	Spindle	e Control Signals	7 – 84
		10.3.1	First spindle control DI signal (PMC to CNC)	7 - 85
		10.3.2	Second spindle DI signal (PMC to CNC)	7 - 86
			First spindle control DO signals (CNC to PMC)	7 – 90
		10.3.4	Second spindle control DO signals (CNC to PMC)	7 – 91
	10.4		d Explanation of Spindle Control Signal	7 – 94
			Torque restriction command signal (TLMLA, TLMHA)	7 – 94
			Forward rotation command signal (SFRA)	7 – 95
			Reverse rotation command signal (SRVA)	7 – 95
			Machine ready signal (MRDYA)	7 – 96
			Alarm reset signal (ARSTA)	7 – 97
			Emergency stop signal (*ESPA)	7 – 98
			Spindle alarm signal (ALMA)	7 – 98
			Zero-speed detecting signal (SSTA)	7 - 99
			Speed detecting signal (SDTA)	7 – 100
) Speed arrival signal (SARA)	7 – 101
			Load detection signal (LDT1A, LDT2A)	7 - 103
			Soft start stop cancel signal (SOCAN)	7 – 104
				- /

		10.4.13 Signal for controlling velocity integration (INTGA)	7 – 105
		10.4.14 Spindle override command (function) with analog input voltage (OVRA)	7 – 105
		10.4.15 Motor power off signal (MPOF)	7 - 107
	10.5	Speed Indication Voltage Signal (SM, OM)	7 – 108
	10.6	Load Indication Voltage (LM, OM)	7 – 109
VI		C SPINDLE SERVO UNIT HV series	
v	III. A	S SPINDLE SERVO UNIT HV series	
1.	GEN	ERAL	8 – 1
2.	FEAT	URES	8 – 1
3.	SPEC	CIFICATIONS	8 – 2
4.	CONF	FIGURATION AND ORDER SPECIFICATIONS	8 – 3
	4.1	Configuration	
	4.2	Order Specifications	_
5.	INST	ALLATION	8 – 5
	5.1	Ambient Temperature	8 - 5
	5.2	Humidity	8 – 5
	5.3	Vibration	8 – 5
	5.4	Atmosphere	8 – 5
6.	COOL	ING	8 – 6
7.	EXTE	RNAL DIMENSIONS AND SERVICE CLEARANCE	8 – 9
	7.1	External Dimensions	8 – 9
		7.1.1 AC spindle servo unit model 30HV/40HV	8 – 9
		7.1.2 AC spindle servo unit model 60HV	8 – 9
	7.2	Fan Unit	
		7.2.1 For model 30HV/40HV (specification number: A06B-6044-K040)	8 – 10
		7.2.2 For model 60HV (specification number: A06B-6065-K301)	8 – 11
	7.3	Maintenance Area	8 – 12
	7.4	Panel Holes	8 – 13
8.	CONIN		8 – 14
0.	8.1	Connection Diagram (without High-Resolution Magnetic Sensor Pulse Coder)	8 - 14
	0.1	8.1.1 AC spindle servo unit model 30HV/40HV	-
		8.1.2 AC spindle servo unit model 60HV	8 – 14 8 – 14
	8.2	Detailed Connection Diagram	8 – 14 8 – 15
	8.3	_	8 - 15
	0.5	Cables	0-1/
9.	CAUT	ION IN USE	8 – 18
	9.1	Unit Structure	8 – 18
	9.2	Installing the Unit	8 - 18

	9.3	Sealin	ng	8 – 18
IX	. PO	SITION	CODER METHOD SPINDLE ORIENTATION	
1.	GEN	ERAL .		9 - 1
2.	FEAT	FURES		9-1
3.	CON 3.1 3.2 3.3	Orient Orient	ATION AND ORDER DRAWING NUMBER	9-2
4.	SPEC	CIFICAT	IONS	9 – 4
5.	CON	NECTIO)N	9 – 5
6.	SIGN	AL EXP	LANATION	9-6
	6.1		e Control Signals	9-6
		6.1.1	DI signals (PMC to CNC)	9-6
		6.1.2	DO signals (CNC to PMC)	9-6
	6.2	Details	of Signals	9 - 6
		6.2.1	Orientation (fixed position stop) command (ORCMA)	9-6
		6.2.2	Orientation (fixed position stop) completion signal (ORARA)	9 – 7
		6.2.3	Gear/clutch signal (CTH1A, CTH2A)	9 - 8
		6.2.4	Command for changing the stop position in spindle orientation (INDXA)	9 - 8
		6.2.5	Direction command for the shorter route when the stop position	
			changes in spindle orientation (NRROA)	9-9
		6.2.6	Command specifying the direction of rotation when the stop position	
			changes in spindle orientation (ROTAA)	9-9
		6.2.7	Spindle orientation command in which the stop position is specified	
			externally (SHA11 to SHA00)	9 - 9
	6.3	Seque	nces	9 - 10
		6.3.1	Orientation command while stopping	9 – 10
		6.3.2	Orientation command during high-speed rotation	9 – 10
	6.4	When 3	Stop Position External Setting Type	
		Spindle	e Orientation Function is Used	9 – 11
	6.5	Using t	the Spindle Orientation Function	
		with the	e Incremental Command Set Externally (Spindle Speed Control)	9 - 12
		6.5.1	General	9-12
		6.5.2	System configurations	9 – 13
		6.5.3	Control sequence	9-14
		6.5.4	PMC signals (DI/DO signals)	9 - 16
		6.5.5	Parameters	9 – 18

	6.6	Quickest Spindle Orientation Control by a Position Coder	. 9–19
		6.6.1 General	. 9 – 19
		6.6.2 System configurations	
		6.6.3 Quickest orientation action	
		6.6.4 PMC signals (DI/DO signals)	
		6.6.5 Parameters	9-25
		6.6.6 Precautions	9 - 34
7.	POS		9 – 35
	7.1	Electrical Specifications	9 - 35
	7.2	Mechanical Specifications	9 - 35
	7.3	Storage	9 - 36
	7.4	Caution in Use	9 - 36
	7.5	External Dimensions	9 - 37
X.	. MA	GNETIC SENSOR METHOD SPINDLE ORIENTATION	
1.	GEN	IFRΔI	
••	GEN	IERAL	10 – 1
2.	FEA	TURES	
			10 – 1
3.	CON	FIGURATION AND ORDER DRAWING NUMBER	10-2
	3.1	Configuration	10-2
	3.2	Order Drawing Numbers	10-2
		3.2.1 Magnetic sensor signal input circuit	10 - 2
		3.2.2 Magnetic sensor	10 - 3
		3.2.3 Spindle orientation function software (CNC optional software)	10 - 3
		3.2.4 Setting parameters for the spindle orientation function	
		with magnetic sensor (parameter address)	10 – 3
4.	SPEC	CIFICATIONS	10 – 4
5.	CON		10 – 5
	5.1	Interface	10 – 5
		5.1.1 Connection when magnetic sensor	10 – 6
6.		AL EXPLANATION	10 – 7
	6.1	Spindle Control Signals	10 – 7
		6.1.1 DI signals (PMC to CNC)	10 – 7
	<u> </u>	6.1.2 DO signals (CNC to PMC)	10 – 7
	6.2	Details of Signals	10 – 7
		6.2.1 Orientation (fixed position stop) command (ORCMA)	10 – 7
		6.2.2 Orientation (fixed position stop) completion signal (ORARA)	
		(ORARB: Second spindle side)	10 – 8
	C C	6.2.3 Gear/clutch signal (CTH1A, CTH2A)	10 – 9
	6.3	Sequences	10 – 10

	6.3.1 Orientation command while stopping	10 - 10
	6.3.2 Orientation command during high-speed rotation	10 - 10
	6.4 Parameter Setting for the MS Signal Gain through Magnetizing Element	10 - 11
	6.5 Parameter Setting for the MS Signal Constant	10 - 12
7.	MAGNETIC SENSOR	10 - 13
	7.1 Electrical Specifications	10 – 13
	7.2 External View	10 - 14
	7.3 Magnetic Sensor Mounting Method	10 - 20
	7.4 Cautions on Installation	10 - 23
8.	TWO-MAGNETIC SENSOR ORIENTATION	10 - 27
	8.1 Configuration	10 – 27
	8.2 Change-over Circuit	10 – 28
	8.2.1 Selection signal of magnetic sensor (SB signal)	10 - 28
	8.2.2 Signal change-over relay	10 – 28
	8.3 Fine Adjustment of Stop Position	10 - 30
XI	. SPINDLE ORIENTATION WITH 1-REVOLUTION SIGNAL SWITCH	
1.	GENERAL	11 – 1
2.	SYSTEM CONFIGURATION	11-2
З.	SPECIFICATIONS	11-3
4.	CONTROL SEQUENCE	11 – 5
5.	PMC SIGNAL (DI/DO SIGNAL)	11 – 6
6.	PARAMETERS	11 – 8
7.	CABLE CONNECTION	11 – 10
	7.1 Connection Diagram	11 – 10
	7.2 Pin Assignment of Each Cable	11 – 11
	7.3 Details of TB1 (For External Reference Switch)	11 – 12
8.	SPECIFICATIONS OF REFERENCE SWITCH	11 – 13
9.	SETTING PINS (SH8 TO 10)	11 – 14
	9.1 SH8 (Selection of Reference Signal)	11 – 14
	9.2 SH9, 10 (Selection of Reference Signal Edge)	11 – 14
10.	MOUNTING DIAGRAM OF SETTING PINS, CHECK PINS AND	44
	VARIABLE RESISTORS	11 – 19

11	I. NOT	ES	11 – 20
X	II. BU	ILT-IN SENSOR SIGNAL CONVERSION CIRCUIT	
1.	GEN	IERAL	12 – 1
2.	FEA	TURES	12-2
3.	CON	FIGURATION	12 - 3
	3.1	Example of Configuration	12-3
		3.1.1 Separate signal conversion circuit	12-3
		3.1.2 Signal conversion circuit mounted in the unit	12-3
	3.2	Order Drawing Numbers	12 – 4
		3.2.1 Signal conversion circuits	12 – 4
		3.2.2 Amplifiers for which the built-in signal conversion circuit can be used	12 – 5
4.	SPE(4.1	CIFICATIONSCompatibility with Conventional Specifications	12 - 6
		(Compatibility Provided by Setting Pins SH6 and SH7)	12 – 6
	4.2	Position Coder Output Signal	
		4.2.1 Number of detector pulses and number of	-
		position coder signal output pulses	12 – 6
		4.2.2 Output signal specifications of position coder	
		(connector CN2 signal) - at constant speed of 1500 min-1	12 - 7
		4.2.3 Output circuit configuration	12 – 7
	4.3	Input Power Supply	12 - 7
	4.4	Maximum Speed	12 - 8
	4.5	Ambient Temperature	12 – 8
5.	EXTE	RNAL DIMENSIONS	12 – 9
	5.1	Separate Type	12 – 9
	5.2	Unit Mounting Type	12 - 9
6.	CABL	E ROUTING DIAGRAM	12 – 10
	6.1	Separate Type	12 - 10
	6.2	Unit Mounting Type	12 - 10
7.	EXAM	PLE OF INSTALLATION	12 - 11
	7.1	Separate Type	12 - 11
	7.2	Unit Mounting Type	12 - 11
		5 <i>// ·····</i>	· E = 11
8.	CONN		12 – 12
	8.1	Block Diagram	12 - 12
		8.1.1 Separate type	12 - 12
			12 - 12
	8.2		12 - 13

		 8.2.1 Built-in sensor and connector (motor) (cable symbol: K10) 8.2.2 Motor and built-in sensor signal conversion circuit 	12 - 14
			10 15
		(cable symbol: K11)	12 – 15
		(cable symbol: K4)	12 – 19
		8.2.4 Built-in sensor signal conversion circuit and serial interface series	
		spindle servo unit	12 – 21
9.	CABL	ES	12 - 24
	9.1	Details of the Cable (K10)	12 - 25
	9.2	Cable (K11) Length	12 - 26
10	. CAUT	FIONS IN USE	1 2 - 28
XI	П. Н	IIGH RESOLUTION MAGNETIC PULSE CODER	
1.	GENE	ERAL	13 – 1
2.	SYST	EM CONFIGURATION	13 – 2
	2.1	Motor and Spindle Linked Belt or Similar Device	13 - 2
	2.2	Built-in Spindle Motor	13-2
З.	SPEC		13 – 3
	3.1	Sensor	13 – 3
	3.2	Detection Circuit	13 - 3
4.	SPEC	IFICATION	13 – 4
5.	CONN	JECTIONS	13 – 5
	5.1	Connection Diagram	13 – 5
	5.2	Connection Diagram of the AC Spindle Servo Unit and AC Spindle Motor	13 – 7
	5.3	Cable Details	13 – 8
	5.4	Cable Routing Diagrams	13 – 10
6.	DIME	NSIONS	10 14
0.	6.1	External Sensor Dimensions	13 – 14
	0.1		13 - 14
			13 – 14
			13 - 15
			13 – 17
	6.2		13 – 19
	0.2	Sensor Circuit Dimensions	13 - 20
7.	CHEC	KING OUTPUT WAVEFORM AND ADJUSTING THE PREAMPLIFIER	13 - 21
	7.1		13 - 22
	7.2		13 - 26

•

8.	3. SENSOR AND PREAMPLIFIER FITTING DIAGRAMS	13–27
9.	9. SENSOR FITTING PROCEDURE	13–28
X	XIV. HIGH-RESOLUTION POSITION CODER	
1.	GENERAL	14–1
2.	FEATURES	14–1
3.	SYSTEM CONFIGURATION	14-2
	3.1 Configuration	14-2
	3.2 Order Drawing Number	14-3
	3.2.1 High-resolution position coder	14-3
	3.2.2 Detection circuit for the high-resolution position coder	14–3
4.	SPECIFICATIONS	14-4
	4.1 Electrical Specifications of High-resolution Position Coder System	14-4
	4.2 Mechanical Specifications of High-resolution Position Coder	14-5
	4.3 Environmental Conditions	14-5
5.		14-6
	5.1 Connection Diagram	14-6
	5.2 Details of Cable K9	14-7
	5.3 Cable Routing Diagram	14–8
6.	SHAPE	14–9
	6.1 External Dimensions of High-resolution Position Coder	14–9
	6.2 External Dimensions of Detection Circuit	14–10
7.	INSTALLATION CONDITION AND CAUTIONS	14–11
	7.1 High-resolution Position Coder	14–11
	7.1.1 How to connect the position coder	14 – 11
	7.1.2 Impact	14 – 12
	7.1.3 Atmosphere	14 – 12
	7.2 Detection Circuit	14 – 12
	7.3 Checking and Adjusting the Waveform of the High-resolution Magnetic	
	Pulse Coder Which is Built in the AC Spindle Motor	14 – 12
xv	V. SPEED RANGE SWITCHING CONTROL	
1.	GENERAL	15–1
2.	CONFIGURATION AND ORDER DRAWING NUMBER	15-2
	2.1 Configuration	15 – 2
	2.2 Order Specifications	15 – 2

З.	SPE	CIFICAT	IONS	15 - 3
4.	CON	NECTIO	NS	15 – 4
	4.1		Α	15 – 4
	4.2		3	15-4
	4.3		of Connection between PMC and Switching Unit	15 - 5
5.	INTE	RFACE	SIGNALS	15 – 6
	5.1	Spindle	e Control Signals	15-6
		5.1.1	Input signals (DI signals) PMC to CNC	15 - 6
		5.1.2	Change request signal (RSLA, RSLB)	15 – 6
		5.1.3	Power-line status check signal (RCHA, RCHB)	15 – 7
		5.1.4	High-speed characteristic side electromagnetic contactor status signal	
			(RCHHGA, RCHHGB)	15 – 8
		5.1.5	Additional information about the Gear/Clutch signal (CTH1, 2)	15 – 8
	5.2	Output	Signal (DO signal) $CNC \rightarrow PMC$	15 – 13
		5.2.1	Power-line change signal (RCHPA, RCHPB)	15 – 13
		5.2.2	Change completion signal (RCFNA, RCFNB)	15 – 14
		5.2.3	Speed detecting signal (SDTA, SDTB)	15 – 14
6.	SEQU	JENCE		15 – 15
	6.1	When t	the Status of both Electromagnetic Contactors for a Low-speed	
			teristic (RCHA) and for a High-speed Characteristic (RCHHGA) is	
		Confirm	ned and the Speed Range Switching Control Works	15 – 15
		6.1.1	Change-operation of a low-speed characteristic \rightarrow a high-speed	
			characteristic	15 – 15
		6.1.2	Change-operation of a high-speed characteristic \rightarrow a low-speed	
			characteristic	15 – 16
	6.2	When t	he Speed Range Switching Control Works by Confirming	
			e Power-line Status Check Signal (RCHA)	15 – 17
		6.2.1	Change-operation of a low-speed characteristic \rightarrow a high-speed	
			characteristic	15 – 17
		6.2.2	Change operation of a high speed characteristic \rightarrow a low-speed	
			characteristic	15 – 18
7.	ALAR	MS REL	ATED TO SPEED RANGE SWITCHING CONTROL	15 – 19
	7.1		Range Switching Control Sequence Alarm	15 – 19
	7.2		line Status Abnormal Alarm	15 – 19
8.	CAUT	IONS IN	I USE	15-21
xν	'I. S	PINDLE	SWITCHING CONTROL	
1.	GENE	RAL .		16 – 1
2.	FUNC	TIONS		16 – 2

3.	RES	TRICTIONS	16-3
4.	CON	FIGURATION AND ORDERING DRAWING NUMBERS	16 – 5
	4.1	Configuration	16-5
	4.2	Motor Assembly, Unit	16-5
	4.3	Order Drawing Number	16 – 6
5.	EXTE	ERNAL DIMENSIONS OF SPINDLE SWITCHING CONTROL CIRCUIT	16 – 7
	5.1	Models 6S-22S	16 – 7
	5.2	External Figure of Spindle Switching Control Circuit	16 – 7
6.	CON		16 – 8
	6.1	Connecting Diagram	16 – 8
		6.1.2 Velocity feedback signal and position coder signal	16 – 10
		6.1.3 Switching for velocity feedback signal and magnetic sensor signal	16 – 12
	6.2	Details of Connections for the PMC and Switching Unit	16 - 14
	6.3	Connector	16 - 16
7.	PARA	METERS	16 – 17
	7.1	Automatic Setting Method of 1 Spindle Parameter	16 - 17
	7.2	Parameters Related to the Spindle Switching Control Function	16 - 18
	7.3	Changing Parameters	16 - 19
8.		DLE CONTROL SIGNALS	16 – 22
	8.1	Input Signals (DI Signals) PMC to CNC	16 - 22
		8.1.1 Change request signal (SPSLA, SPSLB)	16 – 22
		8.1.2 Power – line status check signal (MCFNA, MCFNB)	16 – 23
		8.1.3 Main spindle side electromagnetic contactor status signal	
			16 – 23
	8.2		16 – 24
		8.2.1 Power-line change signal (CHPA, CHPB)	16 – 24
			16 – 25
		8.2.3 Speed zero signal (SSTA, SSTB)	16 – 25
9.	SEQL	JENCE	16 – 26
	9.1	When the Status of Both Electromagnetic Contactors for the Sub Spindle (MCFNA) and for the Main Spindle (MFNHGA) is Confirmed on the Spindle	
	0.0		16 – 26
	9.2	When the Spindle Selector Control Works by Confirming Only the Power-line	
		Status Check Signal (MCFNA)	16 – 27
10.	ALAR	M RELATED TO SPINDLE SELECTOR CONTROL	16 - 28
	10.1		16 - 28
	10.2		16 – 28 16 – 28
11	CAUT		16 - 30

XVII. SWITCHING UNIT

-	1. GENERAL	17 – 1
2	CONFIGURATION Control Spindle Switching Control Control Output Switching Control	17 – 2 17 – 2
	2.2 Output Switching Control	17 – 3
3	B. ORDER DRAWING NUMBER	17 – 4
4	. SPECIFICATIONS	17 – 5
5	 5.1 External Dimensions and Dimensions for Mounting the Switching Unit for the Spindle Switching Control and Output Switching Control 	17 – 6
	 (Type B: 人 - 人 Connection)	17 – 6
	Output Switching Control (Type A: 人 - △ Connection)	17 – 8
6.		17 10
	6.1 Complete Schematic Drawing	17 – 10
	611 Sobornation duration full to the state of the second state of	17 – 10
	6.1.2 Schematic drawing of the switching unit for output switching control	17 – 10
	$(t_1) = 0$	17 – 10
	6.1.3 Schematic drawing of the switching unit for output switching control	17 - 10
	(type R: L connection)	17 - 11
	6.2 Detailed Diagram of Connections hat used by DMO	7-12
-7		
7.	CAUTION IN USE 1	7 – 13
X	VIII. DIFFERENTIAL SPEED CONTROL FUNCTION DESCRIPTION	
1.	OUTLINE	18 – 1
2.	CHARACTERISTIC	
۲.	CHARACTERISTIC	18 – 1
3.	CONFIGURATION AND ORDER DRAWING NUMBER	
	3.1 Configuration	18-2
	3.2 Order Specification of the Option	18-2
		18 – 2
4.	SPECIFICATION OF POSITION CODER SIGNAL INPUT CIRCUIT	18 – 3
	4.1 Output Signal	18 – 3
	4.1.1 Position coder (Connector CNIC input size with	18 – 3
	4.1.2 Connector CNB output signal	18 - 3
	4.2 Bange of Operating Tomperature	18 – 3

5.	INPU	IT/OUTPUT SIGNAL EXPLANATION	18 – 4
	5.1	Signal DI (PMC \rightarrow CNC)	18 – 4
	5.2	The Remarks Concerning Differential Speed Control Function	18 – 4
	5.3	Serial Spindle Parameter Related to Differential Speed Control Function	18 – 5
	5.4	Example of Sequence of Differential Speed Rigid Tap	18 – 7
6.	POSI	TION CODER SIGNAL INPUT CIRCUIT (OPTION) EXTERNAL DRAWING	18 – 8
7.	CON	NECTION	18 – 9
	7.1	Cable Withdrawing Figure	18 – 9
	7.2	Connection Chart	18 - 10
8.	CON	NECTION DETAIL DRAWING	18 – 11
	8.1	Cable Sign K14	
		: Spindle 1 Position Coder to Position Coder Signal Input Circuit	
		: Spindle 2 Position Coder to AC Spindle Servo Unit	18 - 11
	8.2	Cable Sign K15 : Output of Position Coder Signal Input Circuit	18 – 11
9.	JUMF	PER EXPLANATION	18 - 12
	9.1	Jumper Position	18 - 12
		9.1.1 P.C.B edition No.01A	18 - 12
		9.1.2 P.C.B edition No.02A and later	18 – 12
	9.2	Setting	18 - 12

APPENDIX

APPEN	DIX 1 CABLE SPECIFICATIONS	A1 – 1
APPEN		A2 - 1
2.1	How to Obtain Load Inertia Reflected to Motor Shaft	A2 – 1
2.2	Load Torque	A2 – 4
2.3	Spindle Speed Change Gear Stages	A2 – 4
2.4	Determining the Acceleration Time	A2 - 5
2.5	Cutting Amount of Machine	A2 – 7
2.6	Constant Surface Speed Control	A2 - 12
2.7	Tapping	A2 – 17
2.8		A2 - 23
2.9	The Calculating Method of the Orientation Time	A2 - 2 5
APPENE	DIX 3 SERIAL SPINDLE START – UP PROCEDURE	A3 – 1
1.	START - UP PROCEDURE FOR NORMAL OPERATION	A3 – 1
	1.1 Start – up Procedure for Normal Operation (Flowchart)	A3 – 1
	1.2 Parameters for Normal Start of the Serial Spindle	A3 - 2
	1.2.1 Parameters for the serial spindle system	A 3 – 2
	1.2.2 Parameters for automatic parameter setting	A3 – 2

		1.2.3	Parameters related to the spindle speed command	A3 – 3
		1.2.4	Parameters related to the detector	A3 – 4
		1.2.5	Outline of serial spindle speed command processing	A3 – 5
2.	Cs (CONTO	DUR CONTROL FUNCTION START - UP PROCEDURE	A3 – 11
	2.1	Start	- up Procedure of the Cs Contour Control Function (Flowchart)	A3 – 11
	2.2	DI an	d DO Signals for Cs Contour Control	A3 – 12
		2.2.1	DI signal (PMC→CNC)	A3 – 12
		2.2.2	DO signal (CNC→PMC)	A3 – 12
	2.3	Samp	ble Sequence in the Cs Contour Control Mode	A3 – 13
	2.4	Cs Co	ontour Control Parameters	A3 - 14
	2.5	Diagn	losis	A3 – 15
	2.6	Adjus	tment Procedure in the Cs Contour Control Mode	A3 – 16
		2.6.1	Adjustment in reference position return operation	A3 – 16
		2.6.2	Direction of spindle rotation in the Cs contour control mode	
			(parameter No.6500#1)	A3 – 16
		2.6.3	Setting the position gain in the Cs contour control mode	A3 – 16
			Rapid traverse time constant for the Cs contour control axis	
			(No.0524)	A3 – 17
		2.6.5	Gear ratio of the spindle and motor (No.6556 to 6559)	A3 – 17
		2.6.6	Improving the rigidity during cutting operation	
			in the Cs contour control mode	A3 – 17
		2.6.7	Excessive error in Cs contour control mode switching	A3 – 18
	2.7		onal Description of Series 0C in the Cs Contour Control Mode	A3 – 18
		2.7.1	Axis arrangement in the Cs contour control mode	A3 – 18
			Gear selection signals (CTH1A, CTH2A)	A3 – 18
		2.7.3	Position gain in the Cs contour control mode	A3 – 19
		2.7.4	Return to the reference position in the Cs contour control mode	A3 – 20
		2.7.5	Others	A3 - 22
		2.7.6	Alarm	A3 – 22
	2.8	Additio	onal Description of Series 15	A3 – 23
		2.8.1	Axis arrangement in the Cs contour control mode	A3 – 23
		2.8.2	Gear selection signals and position gain	
			in the Cs contour control mode	A3 – 23
		2.8.3	Automatic position gain setting when switching between	
			the spindle rotation control mode and Cs contour control mode	A3 – 25
		2.8.4	Return to the reference position in the Cs contour control mode	A3 – 25
		2.8.5	Others	A3 – 27
	2.9	Metho	d of Calculating a Cutting Load Variation in Cs Contour Control	A3 – 28
		2.9.1	Outline	A3 – 28
		2.9.2	Block diagram indicating the method of calculating	
			a cutting variation	A3 - 29
		2.9.3	Example of calculating a load torque	A3 – 30
		2.9.4	Example of calculating a cutting variation	A3 – 31
	2.10		ty Loop Control Gain	A3 – 33
		2.10.1	Outline	A3 – 33
				A3 – 33
				• • •

		2.10.3 Notes	A3 - 35
З.	STA	ART – UP PROCEDURE FOR SPINDLE SYNCHRONIZATION CONTROL	A3 – 36
	3.1	Start – up Procedure for Spindle Synchronization Control	A3 – 36
	3.2		A3 – 37
		3.2.1 Explanation of spindle synchronization control	A3 – 37
		3.2.2 DI signals (PMC to CNC)	A3 - 38
		3.2.3 DO signals (CNC to PMC)	A3 – 39
		3.2.4 Sample sequence in spindle synchronization control	A3 – 42
	3.3	Parameters Used for Spindle Synchronization Control	
		(Upper Row: First Spindle, Lower Row: Second Spindle)	A3 - 45
	3.4	Diagnosis	A3 - 46
	3.5	Additional Explanations of the Parameters Used	
		for Spindle Synchronization Control	A3 – 47
		3.5.1 Error pulse in spindle synchronization control	A3 – 47
		3.5.2 Automatic detection of the signal indicating a rotation	
		when spindle synchronization control mode is changed	A3 – 47
		3.5.3 Determining the shift (parameter) in synchronous	
		control of spindle phase	A3 – 48
		3.5.4 Function for detecting an abnormal position coder signal	
		and for issuing alarm AL – 47	A3 - 48
	3.6	Additional Explanations of the Function of Spindle Synchronization	
		Control, Series 0TC	A3 – 49
		3.6.1 Alarm	A3 - 50
	3.7	Additional Explanations of the Function of Spindle Synchronization	
		Control, Series OTTC	A3 – 51
		3.7.1 Alarm	A3 – 52
	3.8	Additional Explanations of the Function of	
		Spindle Synchronization Control, Series 15TT	A3 – 53
		3.8.1 Sequence state in spindle synchronization control	A3 – 54
4.	SPIN	DLE ORIENTATION FUNCTION IN SPINDLE SYNCHRONIZATION	
		rol	A3 - 55
	4.1	Outline	A3 - 55
	4.2	Example of System Configuration	A3 – 56
	4.3	Example of Control Sequence	A3 – 56
	4.4	PMC Signals (DI/DO Signals)	A3 – 61
	4.5	Setting Parameters	A3 - 63
5.	SERIA	AL SPINDLE RIGID TAPPING TECHNICAL MANUAL	A3 – 66
	5.1	Outlines	A3 – 66
	5.2	System Configuration	A3 - 66
		5.2.1 Classification by the detector	A3 – 66
		5.2.2 Classification by the CNC Series	A3 – 67
	5.3	Rigid Tapping Sequence (PMC Ladder Program)	A3 - 69
		5.3.1 Outline	A3 – 69
		5.3.2 Sequence	A3 – 69
		5.3.3 DI/DO signals relating to rigid tapping	A3 – 70
		5.3.4 Gear signal of Series 0C/16/18	

	5.3.5 Rigid tapping by the second spindle of Turning system of	
	Series 0C/16/18. (The multi – spindle control option is needed.)	A3 - 72
5.4	Parameter Setting	A3 – 73
	5.4.1 Parameter setting procedure	A3 - 73
	5.4.2 Set the parameter [Position coder signal is used] (= 1)	
	5.4.3 Set the parameter	
	Rotation direction of the motor and the spindle	A3 - 74
	5.4.4 Set the parameter [Attached direction of the position coder]	
	5.4.5 Parameter setting relating to the system	10 10
	in which the position coder is used.	A3 – 77
	5.4.6 Parameter setting relating to the system in which the motor	A3 - 77
	with the built – in sensor (including the built – in motor) is used.	A 3 – 77
	5.4.7 Parameter setting of	A3 - 77
	Gear ratio between the spindle and the motor]	AD 00
	_	
	5.4.8 Parameter setting of [Position gain]	A3 - 83
	5.4.9 Parameter setting of Acceleration/Deceleration time constant	
	and [Spindle maximum speed at rigid tapping]	
	5.4.10 Parameter setting relating to the motor voltage.	A3 – 92
	5.4.11 Spindle backlash	A3 - 93
5.5	Rigid Tapping Parameter Table	A3 – 94
5.6	Operation Check	A3 - 97
	5.6.1 Check of the position error value of the spindle at rigid tapping	A3 - 97
	5.6.2 Check the spindle motor velocity error during the rigid tapping	A3 – 97
5.7	Diagnosis	A3 - 9 9
5.8	Alarm	A3 – 100
	5.8.1 Program error (P/S alarm)	A3 - 100
	5.8.2 Servo alarm	A3 – 101
6. SERI	AL SPINDLE RIGID TAPPING TECHNICAL MANUAL (NO.2)	A3 - 103
6.1	The Outline of the Rigid Tapping	A3 – 103
6.2	Rigid Tapping Adjusting Method of the Spindle Side.	A3 – 105
7. ITEM	S CONCERNING SPINDLE ORIENTATION WITH A POSITION CODER	A3 – 109
7.1	DI and DO Signals	A3 – 109
	7.1.1 DI signals (PMC \rightarrow CNC)	A3 – 109
	7.1.2 DO signals (CNC \rightarrow PMC)	A3 - 109
7.2	Spindle Orientation Parameters (Number following #: Bit number)	A3 – 110
7.3	Adjusting the Serial Spindle Orientation	A3 – 111
7.4	Adjusting the Parameter Which Indicates the Amount of Shift of	A0 - 111
		A3 – 116
		A3 - 110
APPENDIX 4	METHOD FOR OPERATING THE SPINDLE MOTOR USING A SERIAL	
	SPINDLE AMPLIFIER INSTEAD OF THE CNC	
4.1		
4.1	Outline	
4.2		
4.3	Use	
	4.3.1 Preparation	
	4.3.2 Operation	A4 – 2

	4.3.3 Operation in the SI mode	
	(mode of operation with a serial spindle amplifier)	A4 – 3
	4.3.4 Changing motor model parameters	
	for which no motor code is prepared	A4 – 5
	4.3.5 Operation	A4 – 6
	4.3.6 Parameter table	A4 – 7
APPENDIX 5	MONITORING INTERNAL DATA OF THE SERIAL SPINDLE	A5 – 1
5.1	Overview	A5 – 1
5.2	Major Properties	A5 – 1
5.3	Monitoring	A5 – 1
	5.3.1 Outline	A5 – 1
	5.3.2 Specifying data to be monitored	A5 – 2
5.4	Description of Addresses	A5 – 3
5.5	Principles in Outputting the Internal Data of the Serial Spindle	A5 – 4
	5.5.1 Example of output to the indicator	A5 - 4
	5.5.2 Example of output to the LM terminal	A5 – 6
	5.5.3 Example of output to the SM terminal	A5 - 7
5.6	Data Numbers	A5 – 8
	5.6.1 Main data	A5 - 8
	5.6.2 Data to be transmitted between the serial spindle and the CNC	A5 – 8
	5.6.3 Others	A 5 – 9
5.7	Example of Monitoring Data	A5 – 9
	5.7.1 Example of monitoring a positioning error using the LM terminal	A5 – 9
	5.7.2 Example of monitoring a motor speed using the SM terminal	A5 – 9
APPENDIX 6	GROUNDING	A6 – 1
APPENDIX 7	CUSTOMER RECORDS	A7 – 1
1. Spindl	le Motor	A7 – 1
2. Spindl	le Amplifier	A7 – 1
3. Install	ation Condition and Cooling Amplifier	A7 – 1
4. C Axis	Detector	A7 – 1
5. Spindl	e Configurations	A 7 – 2
6. Functi	on	A7 – 2
7. Cs Co	ntour Cutting Conditions	A7 – 2

.

VII. AC SPINDLE SERVO UNIT SERIAL INTERFACE S series

1. GENERAL

The FANUC Spindle Servo Unit Serial Interface S series employs the latest microprocessor and power electronics technology to achieve stable smooth movement with little noise and vibration over a wide range of speeds, super low to high. High-speed optical information transference and increased storage space have been achieved by communicating information to and from the CNC via optical cables. Functions hitherto not available (Cs contour control, spindle synchronization control) are provided, enabling the requirements of the latest CNC machine tools to be met with ease.

2. FEATURES

- (1) Since the speed detecting method has been completely digitalized, rotation speed adjustment and speed offset adjustment have become unnecessary. The number of adjustment processes the user has to make has been reduced.
- (2) Displaying/setting/changing of spindle parameters are performed conventionally by the PCB of the spindle servo unit, but because it has become operable by the CRT of the CNC, the number of operation and adjustment processes have been reduced.
- (3) The spindle orientation control function has been widely made into software form, and improvements in adjustment locations have been made to markedly reduce them and to make adjustments easy. The number of adjustment processes has been greatly reduced.
- (4) Since the interface has become 1 optical cable between the CNC and the spindle servo unit, the conventional 50-core connector cable existing between the PMC and the spindle servo unit has become unnecessary, and the number of connection operations has been reduced.
- (5) Since the quantity of information transmission between the CNCs has appreciably increased, hitherto unavailable new functions (Cs contour control, spindle synchronization control) have become possible.
- (6) The light and compact unit is achieved owing to the plastic case.
- (7) The heat radiation part is cooled by the outside air and the electric circuit in the magnetics cabinet can be completely closed resulting in higher reliability.
- (8) Adoption of a custom LSI and a high-performance processor enhances the motor control performance and flexibility.
- (9) The rigid tapping process involving synchronous feed of the spindle and the Z axis in the machining center is possible.
- (10)Power-saving (energy-saving) design

The spindle servo unit is designed for energy-saving to obtain high power with a small current owing to the unique power factor improvement design in the input part.

(11)Power supply regenerative braking is possible. (Model 1S~40S)

The unique driving method (patent pending) allows the motor to serve as a generator during AC spindle motor deceleration so as to return energy to the power source.

(12)Low noise drive

The unique driving method (patent pending) reduces noises, even if the AC spindle motor is operated at low speed.

(13)Smooth low-speed rotation

The unique driving method (patent pending) assures very smooth rotation down to low speed.

(14)Electric spindle orientation control is applicable (option).

Since the spindle orientation can be done pure-electrically, the mechanical section is simplified, and the machine spindle can be composed with high reliability and largely reduced orientation time.

- (15)The load detection signal function is newly added. This function is used to detect the load status of the machine tool spindle. If the load is larger than the specified load, the contact signal is used to reduce the feed motor speed for moving the table and the cutting load, thus preventing the tools from being damaged.
- (16)Override function with analog input

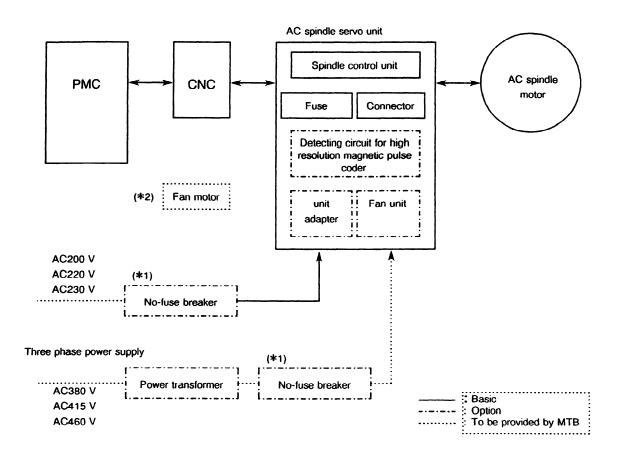
The override function with analog input has been added. This function is implemented by connecting a variable resistor to a spindle servo unit.

This function can apply override to spindle speed to obtain the optimum cutting conditions for an S command.

(17)Function for outputting an MCC cut-off check signal (for models 1S to 26S, and small models 6S, 15S, and 30S)

The newly added contact signal can check the cut-off state of the MCC in the spindle servo unit.

[Functions which have become unusable]


The analog speed command voltage has become unusable.

3. CONFIGURATION AND ORDER DRAWING NUMBER

3.1 Models 1S - 40S

FANUC Spindle Servo Unit Serial Interface S series (Models 1S, 2S, 3S, 6S, 8S, 12S, 15S, 18S, 22S, 26S, 30S, 40S) comprises the following units and components.

(1)	Spindle control unit	(Basic)
(2)	Fuse (spare)	(Basic)
(3)	Connector (for connection)	(Basic)
(4)	Detecting circuit for high resolution	
	magnetic pulse coder	(Option)
(5)	Power transformer	(Option)
(6)	Unit adapter	(Special option for models 6S to 22S)
(7)	Fan unit	(Special option for models 30S and 40S)

(*1) MTB to provide an overcurrent protector with a proper capacity such as a no-fuse breaker to the input power circuit of the AC spindle servo unit S series.

(*2) Make sure to prepare a fan motor to cool the spindle control unit forcibly. However, with respect to the models 1S to 3S, fan motors are built in. Moreover, a fan motor is not necessary either when unit adapters are used for models 6S to 22S, and when fan units are employed for models 30S and 40S.

Туре		Item	Code number	R	emarks
Basic	Spindle control unit for model 1S		A06B-6064-H301#H550		
	Spindle control unit for model 2S		A06B-6064-H302#H550		
	Spindle control unit for model 3S		A06B-6064-H303#H550		
	Spindle control unit for small type model 6S		A06B-6064-H305#H550		
	Spindle control unit for model 6S		A06B-6064-H306#H550		
	Spindle control unit for model 8S		A06B-6064-H308#H550		
	Spindle control unit for model 12S		A06B-6064-H312#H550		
	Spindle control unit for small type model 15S		A06B-6064-H313#H550		
	Spindle control unit for model 15S		A06B-6064-H315#H550		
	Spindle control unit for model 18S		A06B-6064-H318#H550		
	Spindle control unit for model 22S		A06B-6064-H322#H550		
	Spindle control unit for model 26S		A06B-6064-H326#H550		
Basic	Spindle control unit for small type model 30S		A06B-6064-H327#H550		
	Spindle control unit for model 30S		A06B-6064-H230#H550	The analog override function has been added.	
	Spindle control unit for model 40S		A06B-6064-H240#H550	The analog override function has been added.	
	Spindle control unit for model 30S Spindle control unit for model 40S		A06B-6064-H030#H520	Use the new order drawing number for a new order.	
			A06B-6064-H040#H520	Use the new order drawing number for a new order.	
	Optical fiber cable		A02B-0094-K801	Length: 5 m (*)	
	Connectors	rs When the Cs contour control function is not used	A06B-6062-K103	Solder type	
			A06B-6062-K104	Crimp type	
		When the Cs contour control function is not used	A06B-6050-K110	Connector kit by AMP (motor model 0.5S)	
			A06B-6050-K111	Connector (D-sub) kit by Honda (motor model 0.5S)	
		When the Cs contour control function is used	A06B-6063-K105	Solder type	When the built-in
			A06B-6063-K106	Crimp type	Spindle motor is used When the spindle is separate from the spindle motor
			A06B-6063-K107	Solder type	
			A06B-6063-K108	Crimp type	

3.2 Order Drawing Number

(*) See the item of optical fiber cable for it's order drawing number.

3. CONFIGURATION AND ORDER DRAWING NUMBER

Туре	Item	Code number	R	emarks	
Basic	Fuses	A06B-6064-K006	For models 1S	io 3S	
		A06B-6064-K026	For models 6S	lo 26S	
		A06B-6044-K028	For model 30S		
		A06B-6044-K029	For model 40S		
Optional	Detection circuit for the high-resolution magnetic pulse coder	A06B-6064-J720	Spindle: ø65, M	otor: ø65	
		A06B-6064-J721	Spindle: ø130, I	Motor: ø65	
		A06B-6064-J722	Spindle: ø195, I	Motor: ø65	
		A06B-6064-J723	Spindle: ø97.5,	Motor: ø65	
		A06B-6064-J724	Spindle: ø65		
		A06B-6064-J725	Spindle: ø130		
		A06B-6064-J726	Spindle: ø195		
		A06B-6064-J727	Spindle: ø97.5		
Optional	Power transformer	A06B-6052-J001	Models 1S to 3S		
		A06B-6044-J006	Models 6S, 8S and small type 6S	Primary voltage: 380 VAC, 415 VAC, 460 VAC	
		A06B-6044-J007	Models 12S, 15S and small type 15S	Secondary voltage: 200 VAC	
		A06B-6044-J010	Models 18S to 26S		
		A06B-6044-J015	Models 30S, 40S and small type 30S		
	Unit adaptor	A06B-6059-K031	Models 6S to 12	2S	
		A06B-6059-K033	Small type model 15S		
		A06B-6059-K032	Models 15S to 2	22S Note)	
		A06B-6059-K038	Models 26S, sm	nall type 30S Note)	

(Note) When the motor model 40P is driven by the servo unit model 22S, use the unit adaptor of A06B-6059-K038.

3. CONFIGURATION AND ORDER DRAWING NUMBER

Туре	ltem	Code number	Remarks
Optional	Fan unit	A06B-6044-K040	Models 30S and 40S
	Feedback cable for position detection (for the Cs contour control function)	A06B-6063-K801	Preamplifier to CN15
	. ,	A06B-6063-K802	Preamplifier to CN16

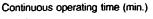
Optical fiber cable

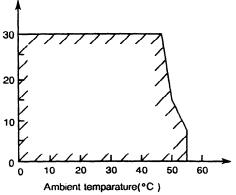
Туре	Item		Code number	Remarks		
		5m	A66L-6001-0009#L5R003			
		1 0 m	A66L-6001-0009#L10R03			
		15m	A66L-6001-0009#L15R03			
		20m	A66L-6001-0009#L20R03			
	Optical fiber cable (with reinforced	30m	A66L-6001-0009#L30R03			
	cover, for external wiring)	40m	A66L-6001-0009#L40R03			
	exerner winnig)	50m	A66L-6001-0009#L50R03			
		60m	A66L-6001-0009#L60R03			
Basic		80m	A66L-6001-0009#L80R03			
				90m	A66L-6001-0009#L90R03	
		100m	A66L-6001-0009#L100R3			
	Optical fiber cable	1m	A66L-6001-0008#L1R003	Because of no reinforced cover, cable		
	(without reinforced cover,	1.5m	A66L-6001-0008#L1R503	forming can be easily done. However, since this cable is inferior to		
	for internal wiring)		A66L-6001-0008#L2R003	cable with reinforced cover in strength, use only for internal wiring.		
		3m	A66L-6001-0008#L3R003			
	Optical cable relay adaptor		A02B-0094-K841	Only one can be used on a single transmission line. When using an optical cable relay adaptor to relay data, the maximum total cable length is 100 m.		

3. CONFIGURATION AND ORDER DRAWING NUMBER

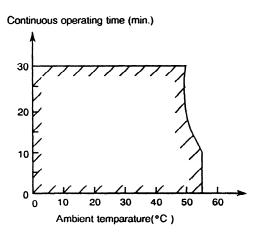
CNC software

Group	Name	FANUC	Serie	s 0	FANUC Series 15				
Group	Name	Specification C		'ty Remarks		Specification	Q'ty	Remarks	
Basic	Spindle serial output	A02B-0098-J940		T, TT series		A02B-0094-J710		Т, М, ТТ	
	function	A02B-0099-J940		M series				series	
Option	Cs contour control	A02B-0098-J944		T, TT series		A02B-0094-J726		Т, М, ТТ	
	function	A02B-0099-J944		M series				series	
	Spindle synchronous	A02B-0098-J945		TT series only		A02B-0094-J744		TT series	
	control function								
	Spindle orientation	A02B-0098-J982	8-J982 T, TT series		A02B-0094-J730		T, M, TT		
	function	A02B-0099-J982		M series				series	
	Speed ragne switching	A02B-0098-J984		T, TT series		A02B-0094-J732		т, м, тт	
	function	A02B-0099-J984		M series				series	
	Spindle positioning	A02B-0098-J880		T, TT series		A02B-0094-J836		т, м, тт	
	function							series	
	Rigid tapping function					A02B-0094-J648		Т, М, ТТ	
		A02B-0099-J885		M series only				series	

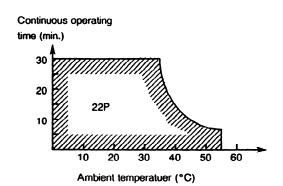

Group	Name	FANUC	Series	: 16	POWER MATE				
Gioop	Hame	Specification	Q'ty	Remarks		Specification	Q'ty	Remarks	
Basic	Spindle serial output	A02B-0120-J850		T, TT series				Depends on	
	function	A02B-0121-J850		M series				the PT board	
Option	Cs contour control	A02B-0120-J852		T, TT series		Function not			
	function	A02B-0121-J852		M series		available			
	Spindle synchronous	A02B-0120-J858		T, TT series		Function not available			
	control function	A02B-0121-J858		M series					
	Spindle orientation	A02B-0120-J853		T, TT series		A02B-0118-J803		РМА	
	function	A02B-0121-J853		M series		A02B-0122-J803		РМВ	
	Speed ragne switching	A02B-0120-J854		T, TT series		A02B-0118-J804		РМА	
	function	A02B-0121-J854		M series		A02B-0122-J804		РМВ	
	Spindle positioning	A02B-0120-J851		T, TT series		Without			
	function					function			
	Rigid tapping function	A02B-0120-J828		T, TT series		A02B-0118-J802		РМА	
		A02B-0121-J828		M series		A02B-0122-J802		РМВ	


4.1 Specifications

AC spindle servo unit


Model	1S	2S	35	small type 6S (+5)		8S	12S	smali type 15S (+6)		18S	22S	26S	small type 30S (+7)		40S
30-min. rated power source capacity kVA	4	7	9	12	12	17	22	26	26	32	37	44	44	54	63
Power source (+1)				AC200	V/220)V/2:	30V	+ 10%, ·	- 159	6 50	/60H	z ± 11	Hz		
Main circuit system		Transistor PWM invertor													
Feed back system	Speed feed back by pulse generator														
Braking system (Regenerative energy processing system)	Regenerative braking (Power regeneration)														
Speed control range	Speed ratio of the minimum to the maximum: 1:100 (When the maximum motor speed is 6000 min ⁻¹ , the ratio is 1:133.)														
Speed variation		Less than 0.1% of the maximum speed (Load variation 10 - 100%)													
Ambient temperature (+2)		0 - 55°C													
Weight kg			13				17				3	0		80	100

- (*1) If the power voltage is other than specified herein, a transformer is needed.
- (*2) The radiator fin of a servo unit needs to be cooled forcibly. When designing a cabinet for a servo unit, give special attention to the cooling fan and forced cooling system for the fin by referring to Chapter 7, "Cooling."
- (*3) In Model 12S and Model 22S, the continuous operating time of the motor at 30-min. rated output is determined as follows by the thermal limitation of the unit.



Heat Restrictions on Continuous Operating Time for Model 12S

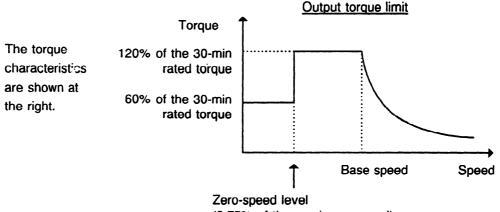
Heat Restrictions on Continuous Operating Time for Model 22S

- (*4) The 30-min. rated power source capacity may vary depending on the P series built-in motor to be used. For the power source capacity, refer to the specifications of the motor series.
 - The total fluctuation rates of voltages applied to the power impedance and power transformer shall not exceed 7% when the motor is accelerating (for 1.2×30 -min. rated power source capacity or for the maximum power source capacity).
- (*5) Notes on the use of small model 6S
 - The spindle parameters for standard model 6S can be used for this model.
 - For applicable spindle motors, refer to the specifications of the motor series.
 - There is no thermal limitation when the ambient temperature is high.
- (*6) Notes on the use of small model 15S
 - Some of the spindle parameters for small model 15S differ from those for standard model 15S. Refer to the parameters listed in the maintenance manuals (B-65045E/04 or later).
 - For the applicable spindle motors, refer to the specifications of the motor series.
 - In Model 22P, the continuous operating time of the motor 30-min. rated output is determined as follows by the thermal limitation of the unit.

Thermally limited continuous operating time of Model 22P used.

- (*7) Notes on the use of small model 30S
 - This model cannot be used as spindle motor model 30S.
 - The continuous current at the rated output for this model is the same as that for model 26S. The current at the maximum output (during acceleration) is the same as that for model 30S. These currents can operate the required motors such as built-in motors B8/12000 and B8/20000.
 - The power source capacity at the maximum output (when the motor is accelerating) is 54 kVA.

(+8) Output torque limit


1. Outline

With the serial spindle amplifier, the motor output torque is limited to 60% of the 30-min rated torque to protect the power transistor when the motor speed is not greater than the zero-speed level (SST = 1).

2. Description

Generally, the following control modes are used at a level not greater than the zero-speed level. In those modes, the motor output torque is limited to 60% of the 30-min rated torque (50% ED):

- 1) When Cs contour control is exercised
- 2) When spindle orientation is completed
- 3) When the spindle is positioned
- 4) When the direction of tool motion is reversed at the bottom of a tapped hole in rigid tapping

(0.75% of the maximum speed)

Example: When model 6S/6000 is used

Assume the following:

Zero-speed level = $6000 \text{ min} - 1 \times 0.75\% = 45 \text{ min} - 1$

30-min rated torque = 4.87 kg·m

Then, at a level not greater than the zero-speed level, the output torque is limited to the following:

 $4.87 \times 60\% = 2.92 \text{ kg·m}$

4.2 Major Component Functions and Application

4.2.1 Spindle control unit

The spindle control unit rectifies three-phase AC input, and converts it into DC so as to perform the velocity control of the AC spindle motor through transistor PWM inverter.

The spindle control unit is provided with a protective and fault detection function as shown in (1) for the purpose of protecting machine, AC spindle motor, and AC spindle servo unit, if a trouble has occurred. It also provides an auxiliary function as shown in (2) for monitoring the operating conditions of the spindle.

Display	Cause of Alarm	Description	Restoration Method
"A" displayed	Abnormal program ROM (not loaded)	Senses that control program is not operating (not installed, etc.)	Load correct program ROM.
AL-01	Motor overheat	Senses that interior temperature of motor has risen above specified value.	Cool motor then conduct alarm reset.
AL-02	Excessive speed deviation	Senses that motor speed has deviated markedly from requested speed.	Alarm reset.
AL-03	Fusing in DC link	Senses that the fuse F4 has melted in the DC link section. (Models 30S and 40S)	Check the power transistor, etc. Replace the fuse.
AL-04 ·	Input fuse melted	Senses that the input fuse F1, F2 or F3 has melled, or open phase and instantaneous power failure have occurred. (Models 30S and 40S)	Check open phase and power regeneration circuit operation. Replace the fuse.
AL-05	Fusing in control power section	Senses that the control power fuse AF2 or AF3 has melted. (Models 30S and 40S)	Check whether or not the control power has short- circuited. Replace the fuse.
AL-07	Excessive speed	Senses that motor speed has exceeded rated speed by 115% or more.	Alarm reset.
AL-08	High input voltage	Senses that the input power voltage changeover switch in on the AC 200 side when the input voltage is AC 230V or more. (Models 30S and 40S)	Set the changeover switch to AC 230V side.
AL-09	Main circuit overload	Senses that temperature of power transistor radiator has become abnormally high.	Cool radiator then conduct alarm reset.
AL-10	Power input undervoltage	Senses drop in input power voltage.	Remove cause then conduct alarm reset.
AL-11	Overvoltage in DC link	Senses that DC power voltage in power circuit has become abnormally high.	Remove cause then conduct alarm reset.
AL-12	Overcurrent in DC link	Senses overcurrent in DC section of power circuit.	Remove cause then conduct alarm reset.

(1) Protective and fault detection functions

Display	Cause of Alarm	Description	Restoration Method
AL-13	Memory abnormality in CPU internal data	Senses abnormality in data memory of CPU.	Remove cause then conduct alarm reset.
AL-15	Spindle switching/output switching alarm	Senses that the switching sequence is illegal while spindle switching/output switching alarm.	Check the sequence.
AL-16	External RAM abnormality	Senses abnormality in external data memory (RAM). This check is only carried out when power is turned ON.	Remove causes then conduct alarm reset.
AL-18	Program ROM sumcheck abnormality	Senses abnormality in program ROM data. This check is only carried out when power is turned ON.	Remove cause then conduct alarm reset.
AL-19	Excessive offset in U-phase current detection circuit	Senses that offset of U-phase current detection circuit is too large. This check is only carried out when power is turned ON.	Remove cause then conduct alarm reset.
AL-20	Excessive offset in V-phase current detection circuit	Senses that offset of V-phase current detection circuit is too large. This check is only carried out when power is turned ON.	Remove cause then conduct alarm reset.
AL-24	Serial data transmission abnormality	Senses abnormality in serial transmission data. (NC power OFF, etc.)	Remove cause then conduct alarm reset.
AL-25	Serial data transmission halt	Senses that serial data transmission has halted.	Remove cause then conduct alarm reset.
AL-26	Speed detection signal for Cs spindle control discontinued	Senses abnormality in Cs spindle control speed detection signal (90000p). (Cable not connected, erroneous parameter setting, etc.)	Remove cause then conduct alarm reset.
AL-27	Position coder signal discontinued	Senses abnormality in position coder signal. (Cable not connected, erroneous parameter setting, etc.)	Remove cause then conduct alarm reset.
AL-28	Position detection signal for Cs spindle control discontinued	Senses abnormality in Cs spindle control position detection signal (90000p). (Cable not connected, erroneous parameter setting, etc.)	Remove cause then conduct alarm reset.
AL-29	Brief overload	Senses that excessive load was continuously imposed for a specified period. (Constrains motor shaft during positioning, etc.)	Remove cause then conduct alarm reset.
AL-30	Overcurrent in input circuit	Senses overcurrent in input circuit.	Remove cause then conduct alarm reset.
AL-31	Speed detection signal discontinued Motor constrained	Senses that motor cannot operate at requested speed (extremely slow or stationary). (Checks phase order.) (Checks the speed detection cable, etc.)	Remove cause then conduct alarm reset.

Display	Cause of Alarm	Description	Restoration Method
AL-32	RAM abnormality in serial data transmission-use LSI	Senses abnormality in RAM contained in LSI used for serial data transmission. This check is only carried out when power is turned ON.	Remove cause then conduct alarm reset.
AL-33	Insufficient recharging of DC link	Senses that DC voltage in power circuit is not sufficient when electromagnetic contacter in amp is turned ON.	Remove cause then conduct alarm reset.
AL-34	Parameter data setting exceeds allowable range	Senses that parameter data setting has exceeded allowable range.	Set correct data.
AL-35	Gear ratio setting too large	Senses that gear ratio data setting has exceeded allowable range.	Set correct data.
AL-36	Error counter overflow	Senses error counter overflow.	Remove cause then conduct alarm reset.
AL-37	Speed detector parameter error setting	Senses that the parameter setting for number of pulses of the speed detector is not correct.	Set correct data.
AL-39	Detection error of one rotation signal for Cs contour control	Senses that the one rotation signal for Cs contour control has not been captured correctly during Cs contour control.	Adjust the signal.
AL-40	One rotation signal for Cs contour control not detected	Senses that the one rotation signal for Cs contour control has not been generated during Cs contour control.	Adjust the one rotation signal.
AL-41	Delection error of position coder one rotation signal	Senses that the position coder one rotation signal has not been captured correctly.	Adjust the signal in case of signal conversion circuit. Check whether or not the cable is shielded correctly.
AL-42	Position coder one rotation signal not detected	Senses that the position coder one rotation signal has not been generated.	Adjust the one rotation signal in case of signal conversion circuit.
AL-43	Position coder signal for differential mode disconnected	Senses that the position coder signal of the main spindle for differential mode is not connected (wire breaking).	Check to make sure whether or not the position coder signal of the main spindle is connected to the connector CN12.
AL-46	Detection error of position coder one rotation signal while threading	Senses that the position coder one rotation signal has not been captured correctly while threading.	Adjust the signal in case of signal conversion circuit. Check whether or not the cable is shielded correctly.
AL-47	Abnormal position coder signal	Senses that the position coder signal is not being counted correctly.	Adjust the signal in case of signal conversion circuit. Check whether or not the cable is shielded correctly.

Display	Cause of Alarm	Description	Restoration Method
AL-48	Abnormal position coder one rotation signal	Senses that the position coder one rotation signal generation has ceased.	Adjust the one rotation signal in case of signal conversion circuit.
AL-49	The converted differential speed is too high.	Detects that speed of other spindle converted to speed of local spindle has exceeded allowable limit in differential mode.	Calculate differential speed by multiplying speed of other spindle by gear ratio. Check if calculated value is not greater than maximum speed of motor.
AL-50	Excessive speed command calculation value in spindle synchronization control	Detects that speed command calculation value exceeded allowable range in spindle synchronization control.	Calculate motor speed by multiplying specified spindle speed by gear ratio. Check if calculated value is not greater than maximum speed of motor.
AL-51	Undervoltage at DC link section	Detects that DC power supply voltage of power circuit has dropped (due to momentary power failure or loose contact of magnetic contactor).	Correct cause, then reset alarm.
AL-52	ITP signal abnormality I	Detects abnormality in synchronization signal (ITP signal) with CNC (such as loss of ITP signal).	Correct cause, then reset alarm.
AL-53	ITP signal abnormality II	Delects abnormality in synchronization signal (ITP signal) with CNC (such as loss of ITP signal).	Correct cause, then reset alarm.
AL-54	Overload current alarm	Detects that excessive current flowed in motor for long time.	Check if overload operation or frequent acceleration/ deceleration is performed.
AL-55	Power line abnormality in spindle switching/output switching	Detects that switch request signal does not match power line status check signal.	Check operation of magnetic contractor for power line switching. Check if power line status check signal is processed normally.

(2) Supplementary Functions

The following supplementary functions are provided as standard features. For details, refer to the CNC Connecting Manual and the parameter section in the Spindle Motor Maintenance Manual.

Supplementary Function	Description
Motor speed display	The actual motor speed (min-1) can be displayed as a 5-digit, 7- segment.
Load meter data	A 10V DC analog voltmeter can be connected.
Speed meter data	A 10V DC analog voltmeter can be connected.
Zero-speed signal output	It is possible to verify that the spindle motor has stopped.
Speed-achieved signal output	It is possible to verify that the speed of the spindle motor has reached the indicated speed.
Speed-detection signal output	It is possible to verify that the speed has dropped below a particular speed, such as that at which the clutch or gear can be changed.
Load detection signal output	When the size of the load exceeds the value specified in the corresponding parameter, it is output in 2 segments. Maximum output is divided into 100 units when set. This function reduces the feedrate to prevent the spindle from being stopped when the spindle is overloaded.
Torque restriction	This function can tentatively lower the output torque of the spindle motor while it operates.
Output restriction pattern selection	 Parameter settings allow a number of output restriction patterns to be selected: No output restriction Output restriction during acceleration/deceleration only Output restriction during normal rotation only Restrict output over all operation areas Maximum output is divided into 100 units when set.
Soft start/stop	The gradient during alteration of speed command (i.e., during acceleration/deceleration) can be set.
Analog override (for models 1S to 26S and small type 30S)	This function applies override to spindle speed to obtain the optimum cutting conditions for an S command.
MCC cut-off check signal output (for models 1S to 26S and small type 30S)	This function can check that the MCC is cut off.

(3) Status error display function

This displays Er-XX on the display unit on the spindle control PCB when there is an erroneous parameter setting or the sequence is inappropriate. When the operation of the spindle motor is defective, check the error number on the display unit and remove the error by performing the following countermeasures.

(Note)	Er- XX is not displayed on the NC screen.
--------	---

Display	Contents	Countermeasure			
Er-01	* Although ESP (there are 2 types: connection signal and PMC \rightarrow CNC) and MRDY (machine ready signal) are not input, SFR/SRV is input. However, regarding MRDY, pay attention to the setting of use/not use spindle parameter MRDY.	 Confirm the sequence of ESP and MRDY. 			
Er-02	If spindle motor is not integrated with spindle in system with high-resolution magnetic pulse coder, speed detector of spindle motor is set to 128 p/rev. Attempt to excite motor fails if value other than 128 p/rev is set.	Set the spindle motor speed detector parameter to 128 p/rev.			
Er-03	Parameter for high-resolution magnetic pulse coder is not set, but Cs contouring control command is entered. In this case, motor is not excited.	Check parameter setting for high-resolution magnetic pulse coder.			
Er-04	Although parameter setting for using position coder was not performed, commands for servo mode and synchronous control are input. In this case, the motor will not be excited.	Confirm the parameter setting of the position coder.			
Er-05	Although option parameter for orientation is not set, the orientation command (ORCM) is input.	Confirm the parameter setting of orientation.			
Er-06	Although option parameter for output switchover is not set, LOW winding is selected.	Confirm the parameter setting for output switching and gravity line status signal.			
Er-07	Although Cs contouring control command was entered, SFR/SRV is not entered.	Confirm the sequence.			
Er-08	Although servo mode control command was input, SFR/SRV is not input.	Confirm the sequence.			
Er-09	Although synchronous control command was input, SFR/SRV is not input.	Confirm the sequence.			
Er-10	Cs control command was entered, but another mode (servo mode, synchronous control, orientation) is specified.	Never set another mode when Cs contouring control command is being processed. Before changing to another mode, clear Cs contouring control command.			
Er-11	Servo mode command was entered, but another mode (Cs contouring control, synchronous control, orientation) is specified.	Do not command other modes during servo mode command. When moving to other modes, perform after releasing the servo mode command.			

Display	Contents	Countermeasure
Er-12	Synchronous control command was entered, but another mode (Cs contouring control, servo mode, orientation) is specified.	Do not command other modes during synchronous control command. When moving to other modes, perform after releasing the synchronous control command.
Er-13	Orientation command was entered, but another mode (Cs contouring control, servo mode, synchronous control) is specified.	Do not command other modes during orientation command. When moving to other modes, perform after releasing the orientation command.
Er-14	SFR/SRV are simultaneously commanded.	Command one or the other.
Er-15	Cs contouring control command is entered when differential speed control function is enabled by parameter setting (No. $6500#5 = 1$).	Check parameter setting and control input signal.
Er-16	Differential mode command (DEFMDA) is entered when differential speed function is disabled by parameter setting (No. $6500#5 = 0$).	Check parameter setting and control input signal.
Er-17	Parameter setting (No. 6511#0,1,2) for speed detector is incorrect (Specified speed detector is not present.)	Check parameter setting.
Er-18	Spindle orientation command of position coder type is entered when use of position coder signal is disabled by parameter setting (No. $6501#2 = 0$).	Check parameter setting and control input signal.
Er-19	Although the command for orienting the magnetic sensor system was entered, another mode was issued.	Do not issue another mode while the orientation command is executed. Before issuing another mode, cancel the orientation command.
Er-20	Both the slave mode and the high-resolution magnetic pulse coder were enabled.	These two settings are incompatible. Check the parameter settings.
Er-21	The slave mode command (SLV = 1) was entered under position control (servo mode, orientation, etc.).	Enter the slave mode command in the normal operation mode.
Er-22	The position control command (servo mode, orientation, etc.) was entered in the slave operation mode (SLV = 1).	Enter the position control command in the normal operation mode.
Er-23	A slave mode command was entered when the slave mode is disabled.	Enable the slave mode.
Er-24	To perform continuous indexing in the mode for orienting the position coder system, incremental operation (INCMD = 1) was first performed, then the absolute position command (INCMD = 0) was entered.	Check the control input signal (INCMD). To execute the absolute position command continuously, be sure to perform orientation with the absolute position command first.

4.2.2 Fuse

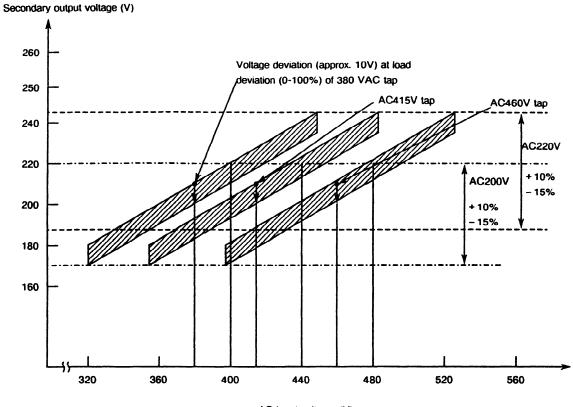
Spare fuses are not attached to the AC spindle servo unit. Order more than one set of spare fuses for stock. Following fuses and parts are applied to each model of AC servo unit.

			Order spe	ecification	
Name	Fuse Specifications FANUC Spec. Dwg. No.	1S - 3S/ Small type 6S A06B-6064- K305	6S - 26S/ Small type 15S, 30S A06B-6064- K026	30S A06B-6044- K028	40S A06B-6044- K029
Fuse (225A)	A60L-0001-0183/225A			4	
Fuse (260A)	A60L-0001-0183/260A				4
Alarm fuse (S3.2A)	A60L-0001-0075/3.2			2	2
Alarm fuse (3.2A)	A60L-0001-0046/3.2	1	1	1	1
Fuse (5A)	A60L-0001-0031/5A	3	3	5	5
Fuse (1.0A)	A60L-0001-0175/1.0A	1	1		
Fuse (0.3A)	A60L-0001-0175/0.3A			4	4
Surge absorber	A50L-2001-0062/441-12			1	1
Surge absorber	A50L-2001-0155/20D431		3	3	3
Surge absorber	A50L-2001-0122/G431K	3			

4.2.3 Power transformer (optional)

When the input power voltage is out of range of 200 through 230 VAC, the power transformer is required.

Provide the transformer with the following specifications by the customer.


(1) Specifications

Item	Model	15	25	35	6S/ Small type 6S	8 S	125	15S/ Small type 15S	18S	225	26S	30S/ Smali type 30S	40S
Rated capacity	30-minuto	4	7	9	12	17	22	26	32	37	44	54	63
(kVA)	Continuous	3	4	7	9	12	17	22	26	31	37	44	54
Secondary current (3	30-min.) (A)	12	21	26	35	48	62	72	88	105	130	156	182
Secondary tap output	it voltage						2	00V					
Secondary voltage regulation								5%					
Secondary tap voltag	Secondary tap voltage deviation						±	3%					

(2) FANUC power transformer specifications (Option)Following five power transformers are available.Select the servo unit according to the 30-minute rated power capacity.

Item	Model		1.58	25	38	6S/ small type 6S	85	12S	15S/ small type 15S	18S	225	26S	30S/ small type 30S	40S
Order specification	ı	A06	6 B-6 05	52-J	001	A06B-60	44-J006	A06B-60	44-J007	A06B-6044-J010		A06B-6044-J015		
Entry drawing No.		A80	DL-000	1-0-	496	A80L-00	01-0313	A80L-00	01-0314	A80L	-0001-	0352	A80L-00	01-0452
Rated capacity	Continuous		7kV	Ά		15k	VA	26k	VA	4	40kVA	1	63k	VA
naleu capacity	30-minute		10k\	/A		20k	VA	30k	VA		45kVA	١	75k	VA
Rated primary volt	age		380	/ 4 ·	15 / -				' + 10%, d for auto				Hz ± 1Hz(3¢
Rated primery cur	rent	11.	A (at	380	V)	23A (at	t 380V)	40A (at	380V)	61A	(at 38	30V)	98A (at	380V)
(continuous)		10	A (at	415	iV)	21A (al	415V)	36A (al	415V)	56A	(at 41	15V)	90A (at	415V)
		94	A (at 4	160	V)	19A (at	460V)	33A (at	460V)	51A	(at 46	50V)	81A (at	460V)
Rated secondary	voltage		200	v		20	ov	20	ov		200V		200	ov -
Rated secondary of	current (cont.)		20/	۹		43	A	74	A		115A		18	5A
Secondary voltage	e regulation							59	6					
Secondary voltage	e deviation							± 3	1%					
Connection		Star-star connection												
Insulation		Class H (Max. temperature 180°C)												
Ambient temperatu	Jre	0 - 45°C												
Allowable tempera transformer	turerise of							135	°C					
Humidy		MAX. 95%RH												
Туре			All transformers are dry-type and self-cooling											
Dielectric voltage							200	00 VAC,	one minu	ıte				
Weight		N	lax. 6	1 k	9	Max. 1	15 kg	Max. 165 kg		Max. 260 kg		kg	Max. 3	75 kg
External dimension	IS		8.1.	10		8.1.	.11	8.1.	12		8.1.13		8.1.	.14
Connection	$\begin{array}{c} R3 & \circ & \frac{460V}{R2} \\ R2 & \circ & \frac{415V}{R1} \\ 0 & 380V \end{array}$ $\begin{array}{c} T1 \\ T2 \\ 0 \\ S1 \\ S2 \\ S3 \end{array}$				PR			(Note 1) SEC. (Secon	dary)	230V	0 0 V			

(3) Secondary output voltage

AC input voltage (V)

(4) Selection of Power Tap

Connect the transformer to the taps given in the following table according to AC input voltages.

Nominal input voltage	Taps used
AC380V + 10%, - 15%	R1, S1, T1, G (380V)
AC400V + 10%, - 15%	R1, S1, T1, G (380V)
AC415V + 10%, −15%	R2, S2, T2, G (415V)
AC440V + 10%, → 15%	R2, S2, T2, G (415V)
AC460V + 10%, - 15%	R3, S3, T3, G (460V)
AC480V + 10%, - 15%	R3, S3, T3, G (460V)

- (5) Cautions on use of transformer
 - (a) When mounting the transformer in a cabinet, separate it so as not to give a thermal influence to other unit.
 - (b) When mounting the transformer outside, be careful not to expose it to cutting chips and cutting oil slash directly.
 - (c) If the transformer may fall, mount it with bolts, etc.

4.2.4 Unit adapter

This unit is applied to the AC spindle servo unit models 6S to 26S, small type 15S and small type 30S with the inner ventilation type. When this stay is mounted the maximum depth is 345mm for models 6S-12S, small type 15S and 341mm for models 15S-22S, 26S. For details, refer to Chapter 8.

4.2.5 Fan unit (This unit is an option for models 30S and 40S.)

Order drawing No.: A06B-6044-K040

This is used when a fan is directly attached to the rear face of the unit for cooling the radiating section of the spindle servo unit for AC spindle motor models 30S and 40S.

Voltage V	Frequency Hz	Input W	Speed min ^{- 1}	Maximum air quantity mm ³ /min	Maximum static pressure mmH ₂ O	Noise level phon	Highest allowable ambient temperature °C
000	50	43	2750	6.5	15	49	70
200	60	40	3200	7.5	16	53	70

[Fan motor specification]

Equivalent product: Model 7556X made by TORYO KOSAN FANUC order drawing No.: Fan motor: A90L-0001-0049/A Finger guard: A97L-0071-0001/A

5. INSTALLATION

5.1 Environemental Conditions

Install the AC spindle servo unit in a place which meets the following environmental conditions.

5.1.1 Ambient temperature

Ambient temperature of the unit:	0 to 55°C
Ambient temperature of the storage cabient:	0 to 45°C

5.1.2 Humidity

Normally 95% RH or below, and condensation-free

5.1.3 Vibration

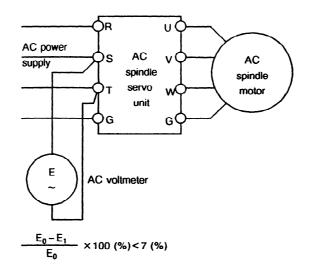
In operation: Below 0.5G

5.1.4 Atmosphere

No corrosive or conductive mists or drops should deposit directly on the electronic circuits.

5.2 Input Power and Grounding

(1) In	put	power
----	------	-----	-------


 Nominal voltage rating: 	200/220/230 VAC
 Allowable voltage deviation: 	- 15% to + 10%
• Power frequency:	50/60 Hz
• Allowable frequency deviation:	± 1 Hz
Power impedance:	Voltage deviation due to load (30 min. rating × 1.2 or
	when max. output range) should be less than 7%.

Such a system is adopted for AC spindle servo units that, during deceleration, the rotating energy of the motor is regenerated as shop power source using a transitor invertor (for models 1S to 26S, small type 6S, small type 15S and small type 30S) or a thyristor inverter (for models 30S, 40S, 30HV, 40HV and 60HV). For this reason, they are subject to the following restrictions or influences when the power impedance is large. Therefore, be careful when using a power transformer with a comparatively small capacity or a long cable.

- (1) When power impedance is large, it may be necessary to reduce the regeneration current in order to lengthen the deceleration time.
- (2) Other devices and the like may be influenced by the distortion of voltage waveform caused by the commutation change of a regenerative inverter.

.

• Method to check power impedance

where,

- E₀: Voltage at motor stop
- E1: Voltage during motor acceleration or voltage immediately before the start of speed reduction with the application of load.
- Power supply unbalance: The range of voltage fluctuation between each phase of a 3phase power supply is the rated voltage ± 5% or less.
- Install a breaker having an adequate voltage capacity for protection in the input section of the AC spindle servo unit. See 5.3.
- When the AC spindle motor provides most of the power for the entire machine, a low voltage phase advancing condensor must be installed.
- Alarm No. 4 may light up in response to input power supply open phase and momentary power failure. (Models 30S - 40S).

• Leakage current at AC spindle motor drive

As the drive circuit uses a transistor-pulse duration modulation control system, highfrequency leakage current components flow to the earth via the spindle motor and connecting cables. However, for cables of 50 m or less in length, the 50/60 Hz leakage current is equal to or less than the non-operating current (15 mA) of the general highsensitivity, high-speed earth leakage breaker.

Radio noise

As the drive circuit uses a pulse duration modulation control system, high-frequency current when switching over the transistor may cause generation of noise if a radio is installed close to the AC spindle motor and the drive circuit.

The noise will have an effect on AM radio, but not on FM radio or TV. Consider the following items as measures related to mounting and machinery installation in order to minimize radio noise.

- (a) Install the AC spindle servo unit in a metal cabinet.
- (b) Run the connection cable which exists between the AC spindle servo unit and the AC spindle motor, through a metal duct and earth the duct.
- (c) Make connections between the terminals of the AC spindle servo unit and the AC spindle motor (the G terminals of each unit) as specifications.
- (2) Ground

Be sure to ground cables shown below.

- Ground cable of input power supply
- · Ground cable of an AC spindle servo unit and motor

5.3 Protection against Overcurrent

The machine tool builder must prepare an overcurrent protector such as a circuit breaker with appropriate capacity and use it for the input power circuit. Select a protective device with a capacity that is 1.2 times the 30-min. rated power source capacity.

Rated current \doteq 30-min. rated power source capacity × 1.2 \div 200 [V] $\div \sqrt{3}$

.

6. UNIT CALORIFIC VALUE

Model	1S	28	35	6S/ small type 6S	8S	12S	15S/ small type 15S	18S	22S	26S	Small type 30S	30S	40S
Caloric value at continuous rated output [W]	230	250	290	360	440	600	750	900	1070	1250	1500	2000	2400

7. COOLING

The AC spindle servo unit S series employs the structure of eternal cooling for the radiating section of the power circuit. It is required to consider a forced-air cooling for cooling the radiating section of the power circuit.

(1) Models 1S - 3S, small type 6S

A fan motor for cooling has been built in. Give consideration to the inlet and output ports so that a sufficient wind speed may be obtained for forced-air cooling.

- (2) Models 6S 40S, small type 15S, small type 30S A fan motor for cooling is not built in. A cooling fan motor required for forced-air cooling should by prepared by the machine manufacturer.
- (Note) If he unit is not cooled properly, an overheat alarm or a problem may occur.

7.1 Cooling the AC Spindle Servo Unit

7.1.1 Models 1S - 3S, small type 6S

The AC spindle servo unit has such a construction that the radiating section of the power circuit section, the main heat generating section, is externally cooled by a built-in fan motor. Therefore, give consideration to the inlet and output ports so that a sufficient wind speed may be obtained for forced-air cooling, which can radiate 70% of the carolic value.

7.1.2 Models 6S - 22S

Cool the radiating section of the AC spindle servo unit using a wind and with a wind shown in Table 7.1.2, which can radiate 70% of the carolic value. See the diagram of the cooling system.

Model	6S - 12S	15S - 22S
Wind speed	More than 3 m/sec	More than 3.5 m/sec

Table 7.1.2 Cooling the AC spindle servo unit

(Note) When the servo unit model 22S drives motor model 40P, the cooling condition should be the same as model 26 described in 7.1.4.

7.1.3 Small model 15S

Cool the radiating section of the AC spindle servo unit using a wind as shown in Fig. 7.1. Use two fan motors equivalent to model 5915PT-20W-B30-S04 manufactured by Minebea Co., Ltd. See the diagram of the cooling system.

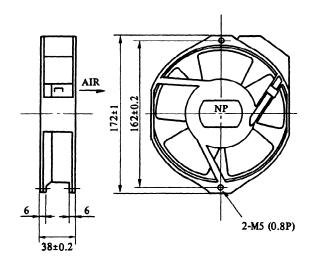
7.1.4 Model 26S, small type 30S

Cool the radiating section of the AC spindle servo unit using a wind. Use four fan motors equivalent to the model 5915PT-20W-B30-S04 made by N.M.B. See the diagram of the cooling system.

(Note) Magnetic cabinet structure to be employed to prevent fan motor wind leakage whenever a forced-air cooling is performed.

(**Remarks**) With respect to the models 6S to 22S, the required wind speed is obtained by using a unit adapter.

The unit adapter for models 6S to 12S has one 3-phase fan motor. The unit adapter for models 15S to 22S and small model 15S has two 3-phase fan motors. The unit adapter for models 26S and small model 30S has four 3-phase fan motors.


Each fan motor is a Minebea model 5915PT-20W-B30-S04.

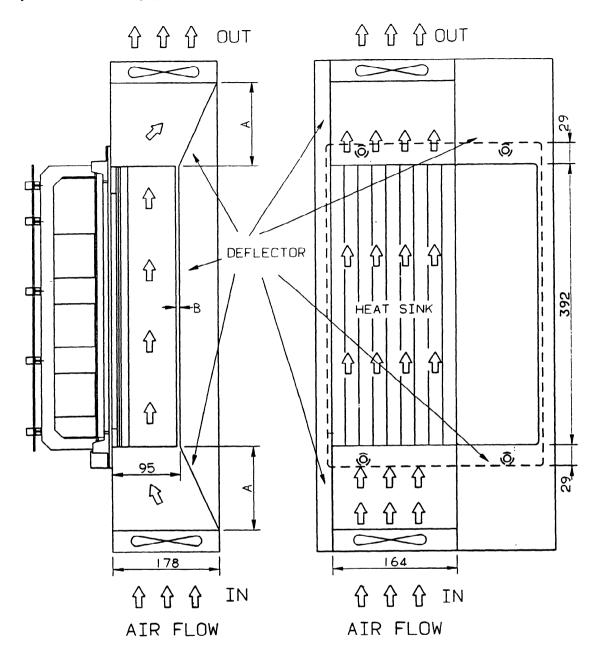
An example of a 3-phase cooling fan motor, Minebea model 5915PT, is shown below.

[Specifications]

Model		A90L-0001-0371 (5915PC-20W-B30-S04)		
Voltage	v	200, 3 <i>ø</i> , +20%, - 15%	200, 3¢, +30%, -15%	
Frequency	Hz	50	60	
Max. airflow m ³ /min		5.5	6.3	
Max. static pressure	mmAq	13	14.5	
Speed	min - 1	2650	2900	
Current	А	0.18	0.22	
Input power	w	26.0	26.0	
Noise	dB	53	55	
Weight	kg			
		0.8		

[External dimensions]

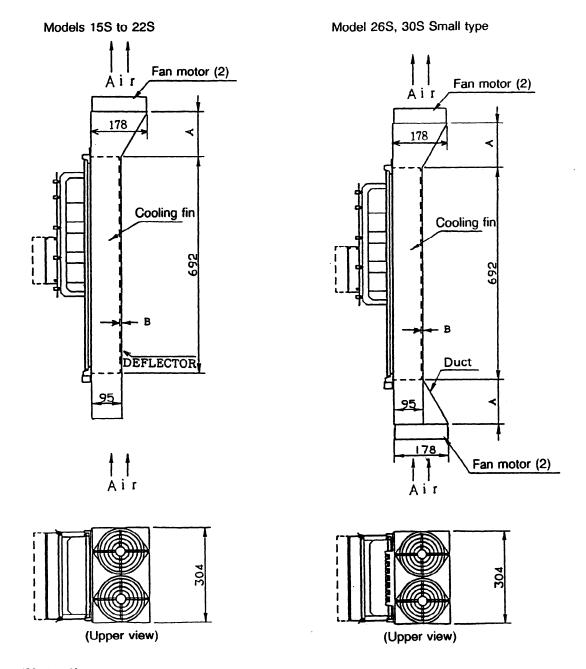
ŶŶŶOUT \sim С 178 62 ∇ 6 ⇧ П DEFLECTOR 1 分 公 釨 Ú. € I 1 392 1 B SINK HEAT ⇧ 쉾 飰 行 ١ì 釨 <u>Q</u> ₩. 53 ∂ Ŷ 分 164 95 <u>ት</u> ት ት ŶŶŶ IN IN AIR FLOW AIR FLOW


[Reference of Cooling system] Models 6S to 12S

(Note 2) Dimension B (gap between the radiator and duct) must be approx. 5mm so that the duct does not directly touch the radiator. This is because the radiating section (resistor) becomes very hot.

(Note 3) Use Minebea fan motors, model 5915PC-20W-B20-04 or equivalent. The air flow is 5.5m³/min at 50 Hz or 6.0m³/min at 60Hz. Prepare two fan motors for models 6S to 12S.

(Note 4) Mount a deflector so that air strikes the heat sink directly.


[Reference of Cooling system] Model 15S Small type

(Note 1) Dimension A must be 50 mm or more.

(Note 2) Dimension B (gap between the radiator and duct) must be approx. 5 mm so that the duct does not directly touch the radiator. This is because the radiating section (resistor) becomes very hot.

(Note 3) Use Minebea fan motors, model 5915PC-20W-B20-04 or equivalent. The air flow is 5.5 m³/min at 50 Hz or 6.0 m³/min at 60 Hz. Prepare two fan motors for small model 15S and models 15S.

(Note 4) Mount a deflector so that air strikes the heat sink directly.

[Reference of Cooling system] Models 15S to 22S, 26S and 30S Small type

(Note 1) Dimension A must be 50mm or more.

(Note 2) Dimension B (gap between the radiator and duct) must be approx. 5mm so that the duct does not directly touch the radiator. This is because the radiating section (resistor) becomes very hot.

(Note 3) Use Minebea fan motors, model 5915PC-20W-B20-04 or equivalent. The air flow is 5.5m³/min at 50 Hz or 6.0m³/min at 60Hz. Prepare two fan motors for models 15S to 22S, and four fan motors for models 26S and small type model 30S.

(Note 4) Mount a deflector so that air strikes the heat sink directly.

7.1.5 Models 30S and 40S

70% of the carolic value generated by a unit can be radiated by attaching an appropriate fan motor.

(1) Fan motor with required wind speed/air quantity

Model	Models 30S and 40S		
Wind speed			
Air quantity output	4.5m ³ /min or larger		
Fan motor	7556X by TORYO or equivalent (2)		

(2) Required air quantity and ventilation route

Make sure to supply an air quantity of 4.5m3/min or more from the air inlet.

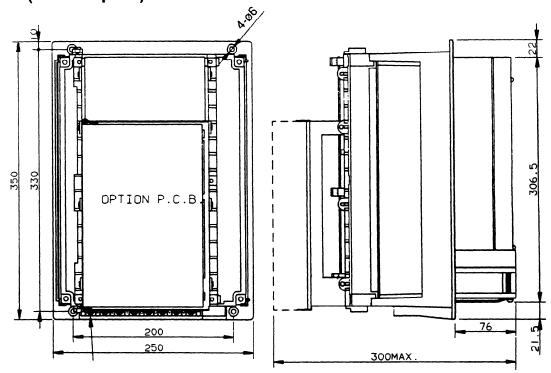
For supplying air, it is recommended to supply cooling air from the inlet so that the fan motor can be used for a long time. An optional fan unit can be attached directly to the air inlet as shown in the external dimensions in 8.1.6 or 8.1.7. In that occasion, keep a space of 50mm or more on the back side of the fan motor.

For designing a ventilation route, make good use of the M4 tap holes prepared around the inlet and outlet ports (six holes for each.

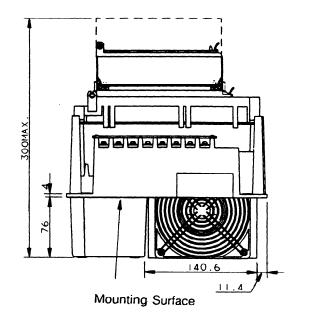
(3) Cautions for air supply

When the condition of the environment is not good, such troubles are expected that after a long time the radiation capacity will by reduced, leakage will occur due to the deterioration of insulation in the resistor section, and the like. To prevent these troubles, make sure to supply air through an air filter. For filter dimension, select one so that a required quantity of air can be obtained. Air filter: VILEDON PS/600 (by JAPAN Vilene CO., LTD.) Fan motor: Model 7556 (2) by TORYO KOSAN

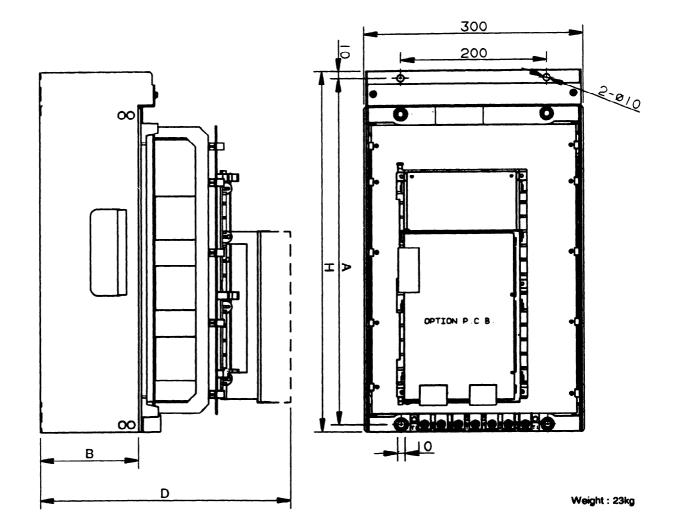
(4) Cautions for outlet


Take care so that machine oil may not flow in, or metal chips may not rush into through the outlet.

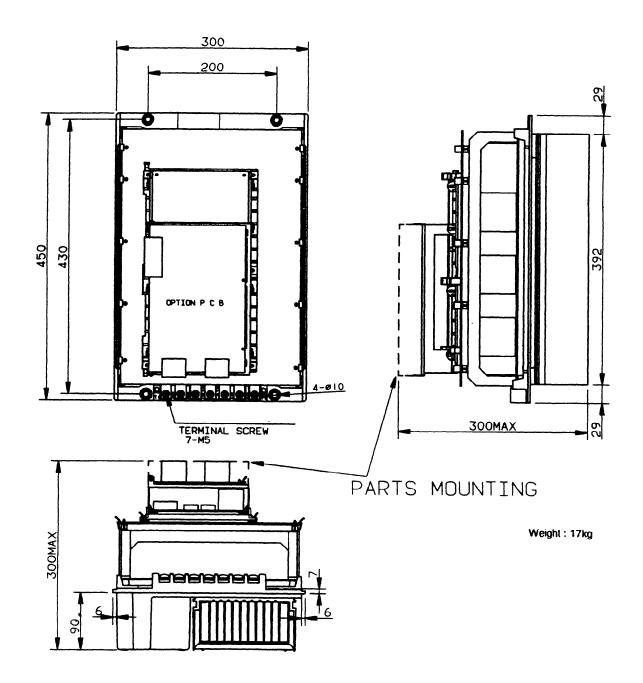
8. EXTERNAL DIMENSIONS AND MAINTENANCE AREA


8.1 External Dimensions

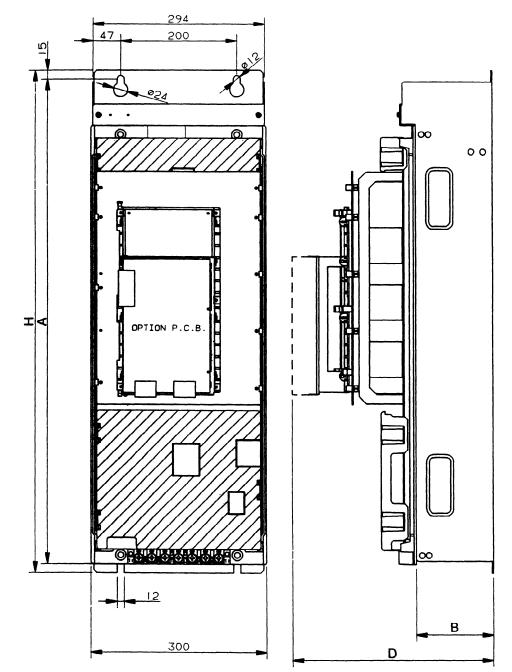
Refer to the next subsection for the external dimensions of the basic unit. Also for the optional units, refer to each subsection for its external dimensions.


8.1.1 AC spindle servo unit models 1S - 3S, small type model 6S (with an option)

Terminal screw M4 (8 points)

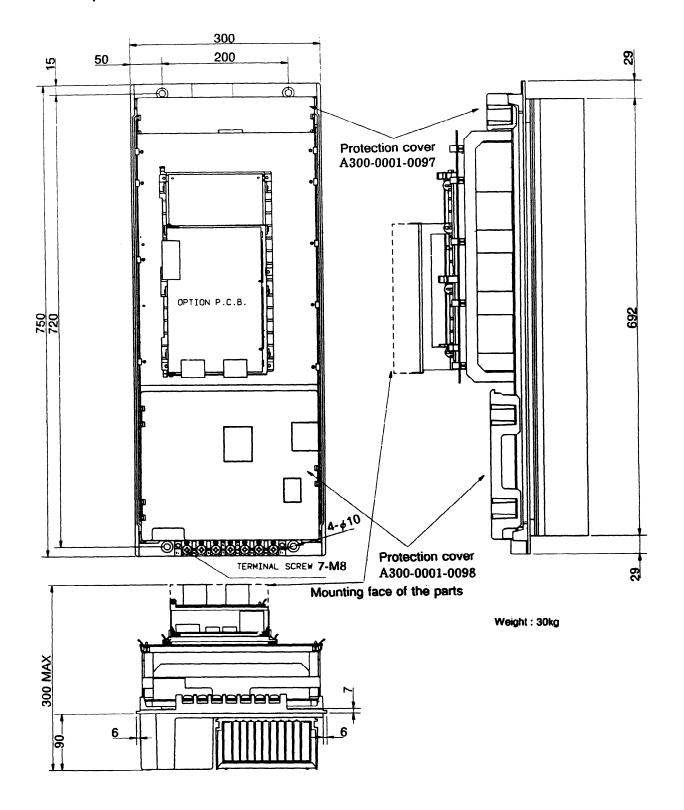


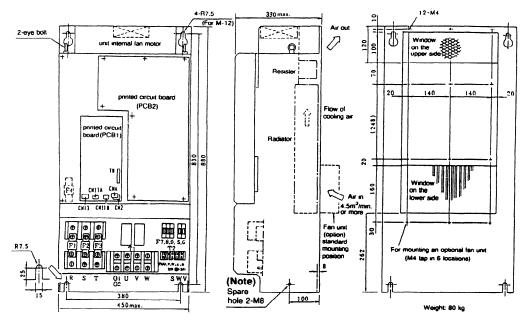
Weight: 13kg


8.1.2 AC spindle servo unit models 6S - 12S, small type model 15S (with unit adaptor)

Model	H mm	A mm	D mm	B mm
6S - 12S	500	480	345	135
Small type 15S	600	580	364	154

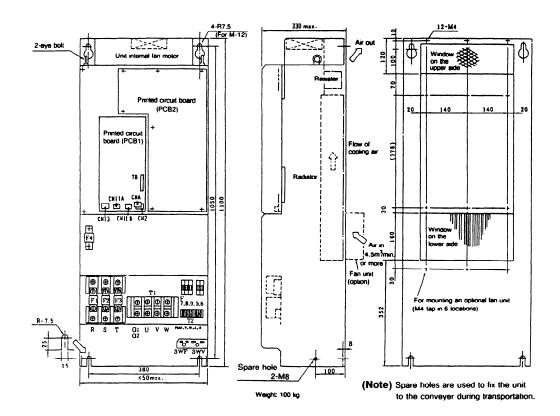
8.1.3 AC spindle servo unit models 6S - 12S, small type model 15S (without unit adaptor)

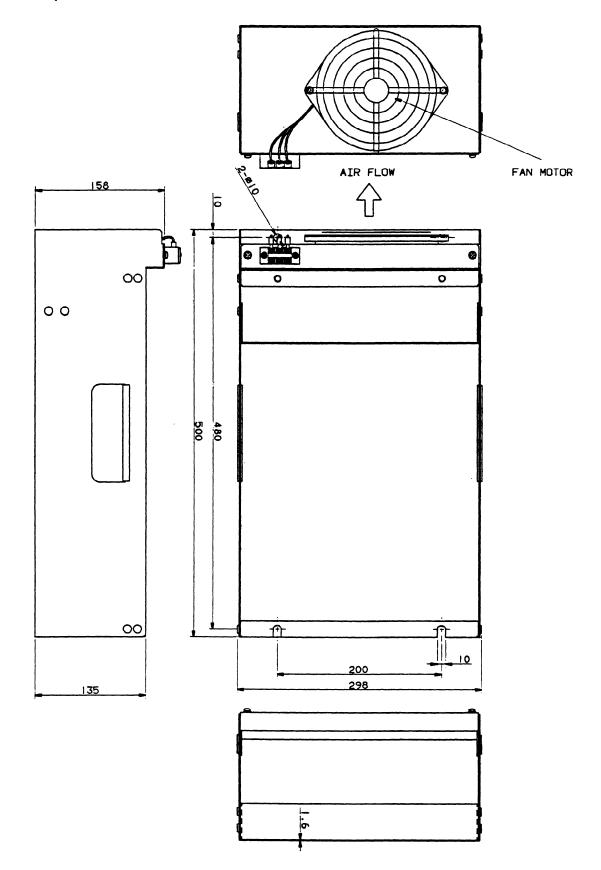

8.1.4 AC spindle servo unit models 15S - 22S, 26S, small type model 30S (with unit adaptor)


(Refer to 8.1.6 for the external dimensions for the unit adaptor.)

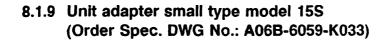
Weight: 40kg

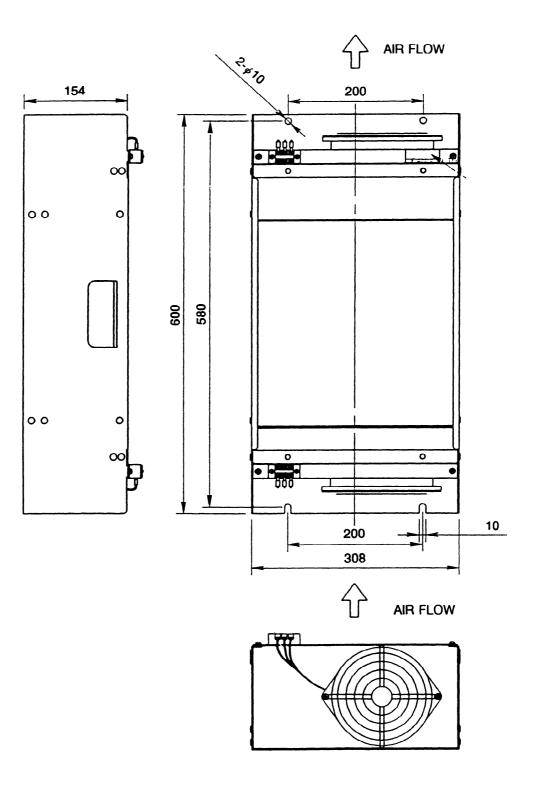
Model	Hmm	A mm	D mm	B mm
15S - 22S	860	830	341	131
Small type 15S	955	925	388	178

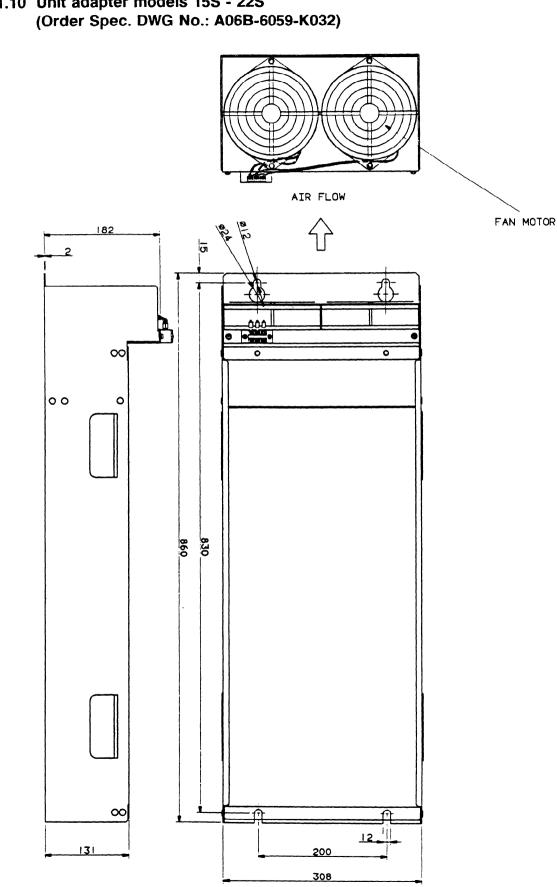

8.1.5 AC spindle servo unit models 15S - 26S, small type model 30S (without unit adaptor)



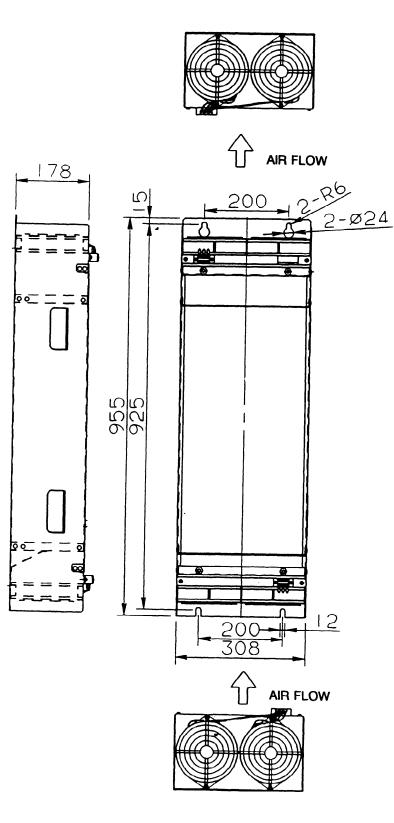
8.1.6 AC spindle servo unit model 30S

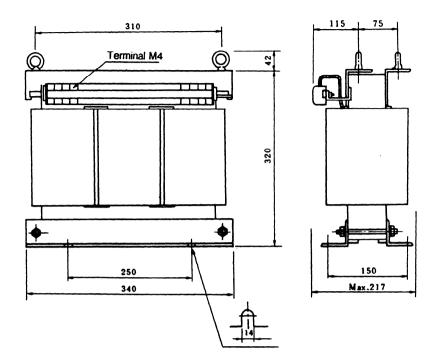

(Note)Spare holes are used to fix the unit to the conveyer during transportation.


8.1.7 AC spindle servo unit model 40S



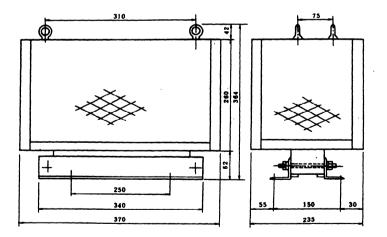
8.1.8 Unit adapter models 6S - 12S (Order Spec. DWG No.: A06B-6059-K031)

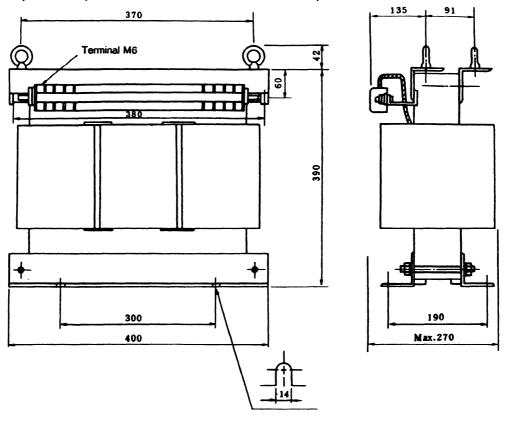




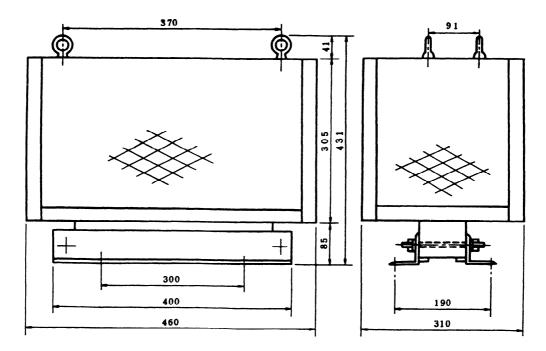
8.1.10 Unit adapter models 15S - 22S

7 – 42


8.1.11 Unit adapter model 26S, small type model 30S (Order Spec. DWG No.: A06B-6059-K038)

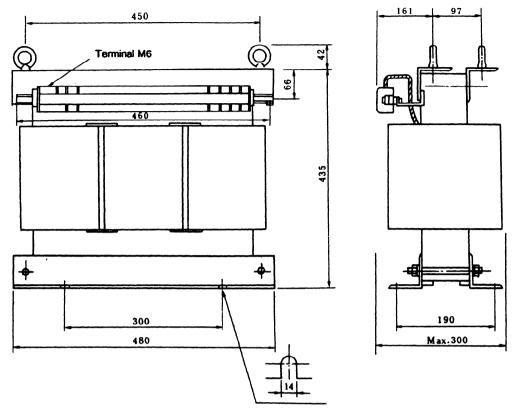

8.1.12 Power transformer for models 1S - 3S (Order Spec. DWG No.: A06B-6052-J001)

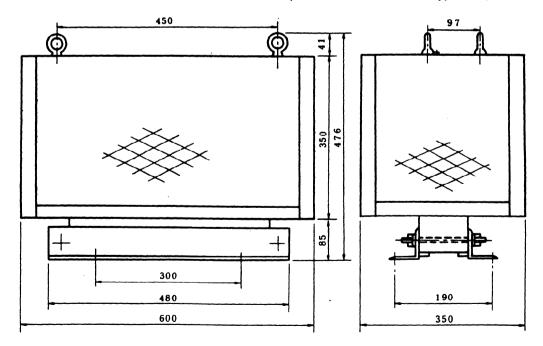
Dimensions of transformer without cover (Models 1S - 3S)



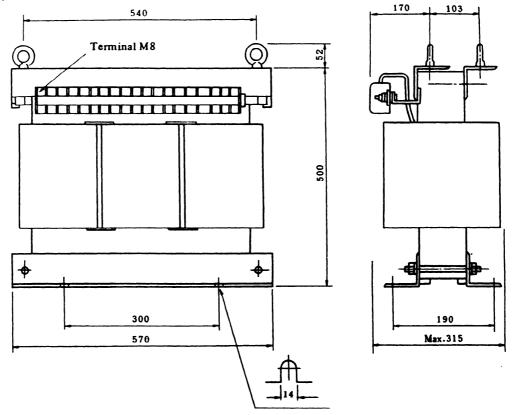
Dimensions of transformer with cover (Models 1S - 3S)

8.1.13 Power transformer for models 6S, 8S, small type model 6S (Order Spec. DWG No.: A06B-6044-J006)

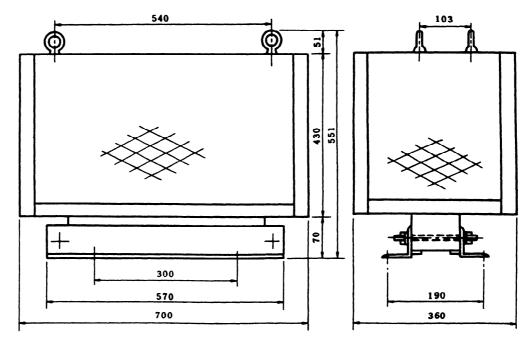

Dimensions of transformer without cover (Models 6S, 8S, small type 6S)


(Note) Nets are covered on four sides and the plate is covered on the top.

Dimensions of transformer with cover (models 6S, 8S, small type 6S)

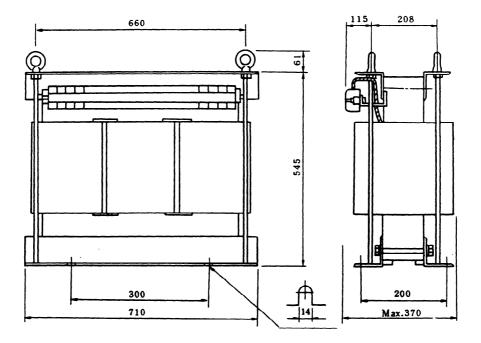


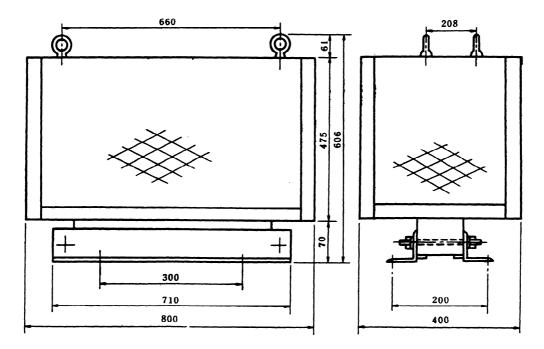
Dimensions of transformer without cover (Models 12S, 15S, small type 15S)


(Note) Nets are covered on four sides and the plate is covered on the top.

Dimensions of transformer with cover (Models 12S, 15S, small type 15S)

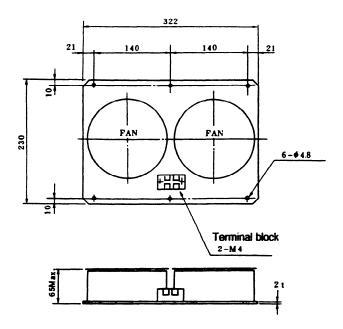
8.1.15 Power transformer for models 18S, 22S, 26S (Order Spec. DWG No.: A06B-6044-J010)


Dimensions of transformer without cover for models 18S, 22S


(Note) Nets are covered on four sides and the plate is covered on the top.

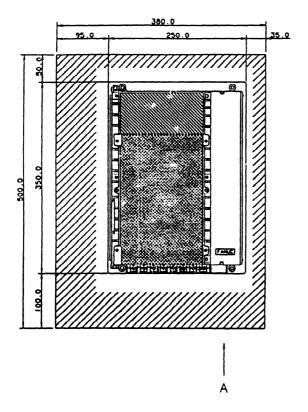
Dimensions of transformer with cover for models 18S, 22S, 26S

8.1.16 Power transformer for small type model 30S, models 30S, 40S (Order Spec. DWG No.: A06B-6044-J015)



Dimensions of transformer without cover (small type 30S, models 30S, 40S)

Dimensions of transformer with cover (small type 30S, models 30S, 40S)


8.1.17 Fan unit for models 30S, 40S (Order Spec. DWG No.: A06B-6044-K040)

(Note) The six M4 screws for mounting the fan unit are to be prepared by the user.

8.2 Maintenance Area

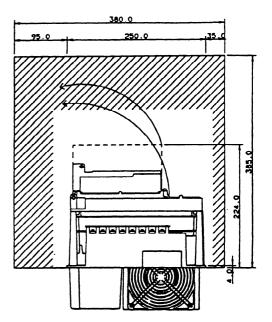
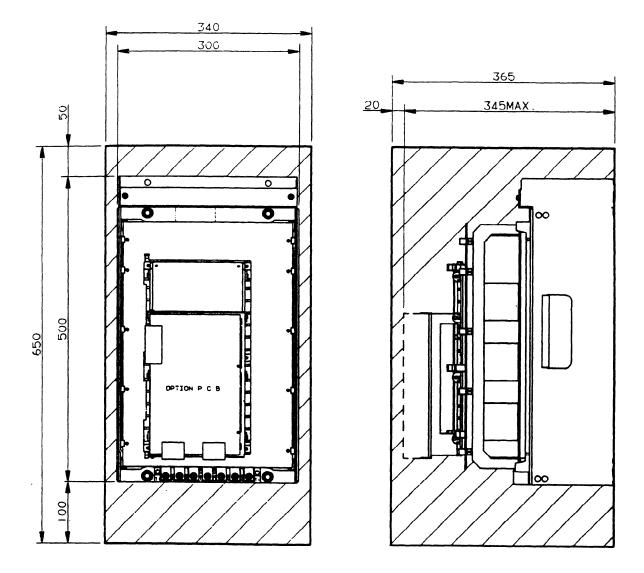
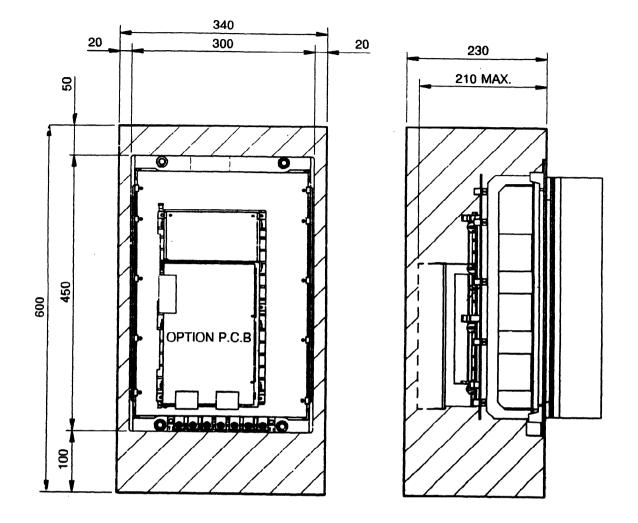
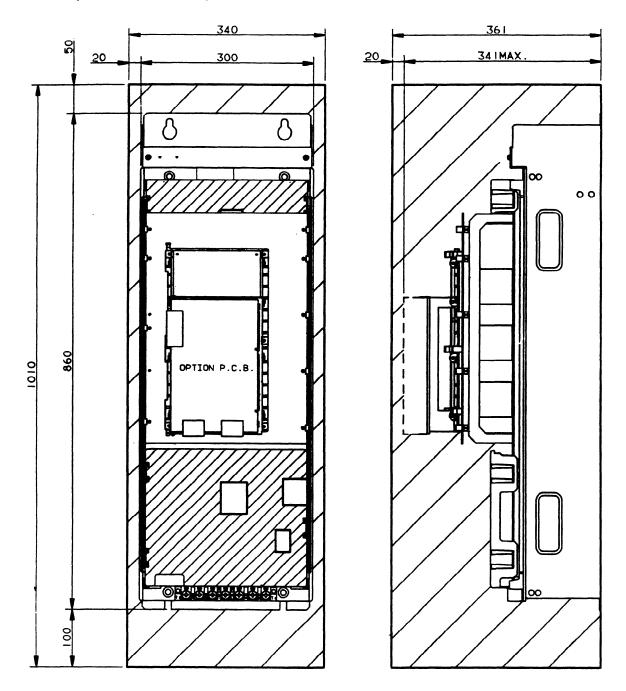
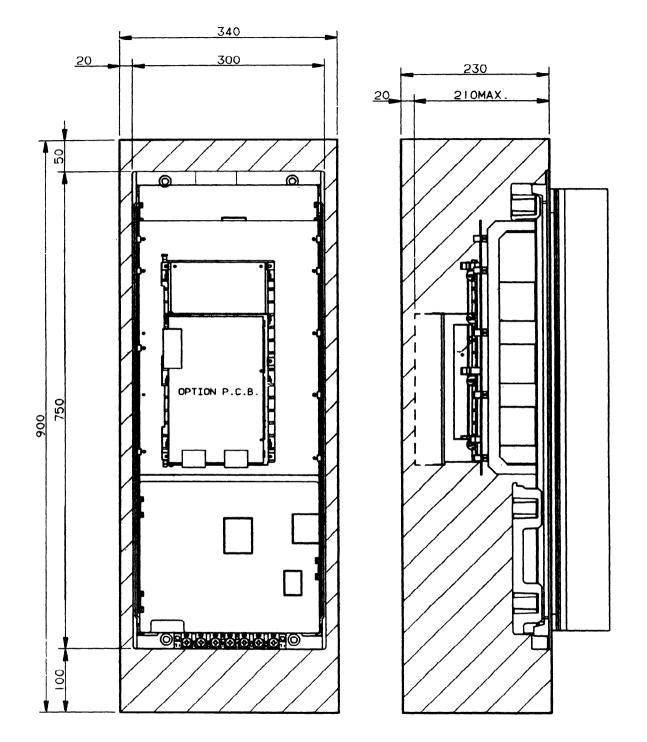




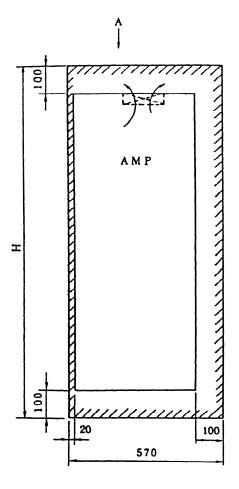
Figure viewed from A



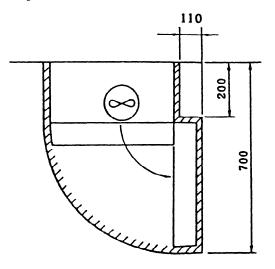
Model	A mm	H mm
6S - 12S	650	500
Small type 15S	750	600



8.2.3 AC spindle servo unit models 6S - 12S, small type model 15S (without unit adapter)


8.2.4 AC spindle servo unit models 15S - 22S, 26S, small type model 30S (with unit adapter)

Model	A mm	Hmm
15S - 22S	1010	860
26S, small type 30S	1115	955



8.2.5 AC spindle servo unit models 15S - 26S, small type model 30S (without unit adapter)

8.2.6 AC spindle servo unit models 30S, 40S

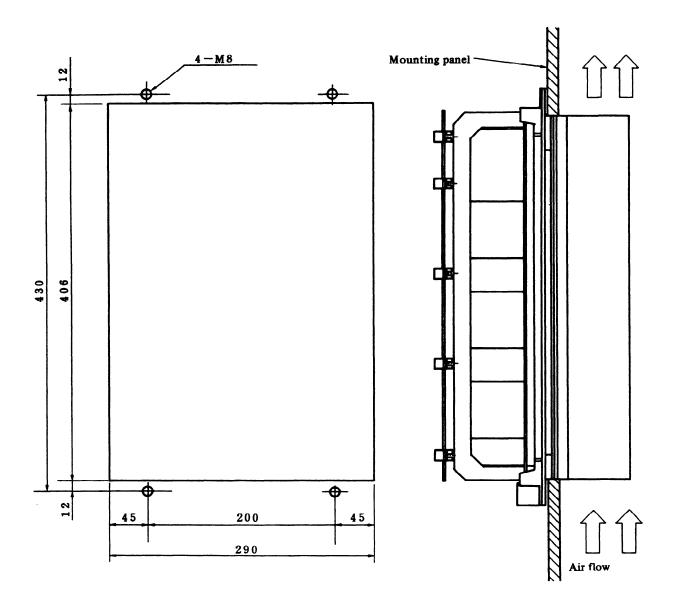
H=1300 (Model 40S) H=1080 (Model 30S) Figure viewed from A

8.3 Panel Hole Machining Diagram and Mounting

8.3.1 AC spindle servo unit models 1S - 3S, small type model 6S

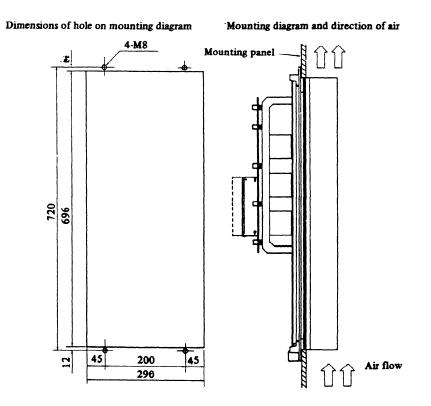
(Panel hole machining diagram)

(Mounting status and cooling air direction)


Mount the unit vertically with the terminal block located on the lower side.

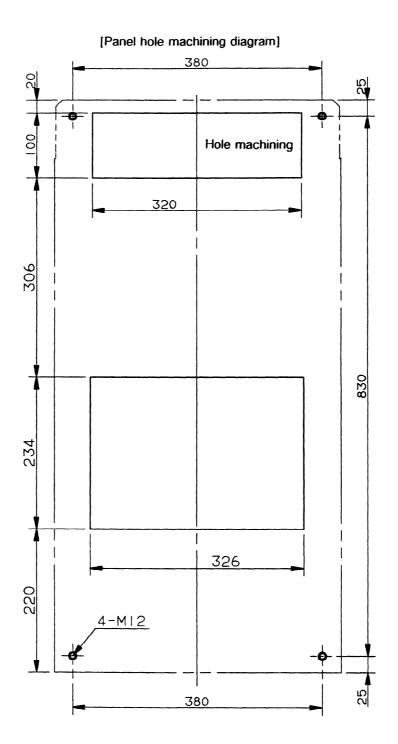
(Note) Though the dimension of the existing amplifiers 1S-3S is 244mm, 240mm is recommended for the serial amplifiers 1S-3S for increasing the sealing effect.

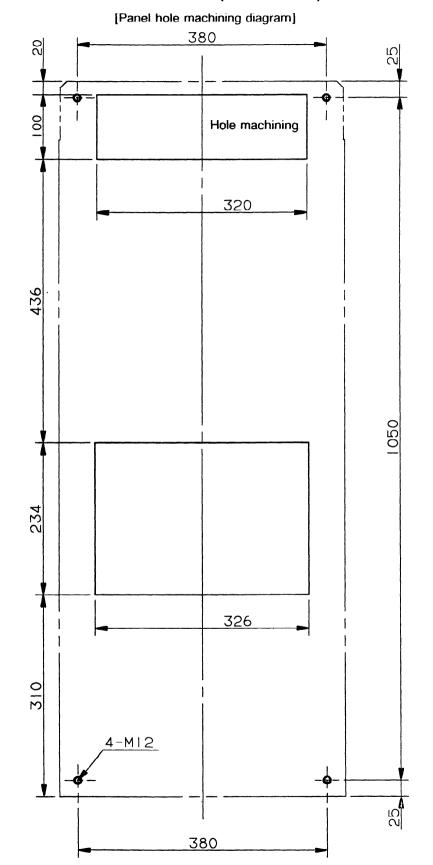
8.3.2 AC spindle servo unit models 6S - 12S, small type model 15S


(Panel hole machining diagram)

(Mounting status and cooling air direction)

(Note) The cooling fan is not provided for the spindle control unit. For cooling methods, see Chapter 7.


8.3.3 AC spindle servo unit models 15S - 26S, small type model 30S



(Note) The cooling fan is not provided for the spindle control unit. For cooling methods, see Chapter 7.

It is recommended to provide a packing (acrylonitrile-butadiene rubber, NBR, soft type) illustrated in the figure above to protect from oil and dust by the MTB.

8.3.5 AC spindle servo unit model 40S (with fan unit)

8.4 Cautions for Mounting

8.4.1 Cautions for mounting a unit for models 30S and 40S

(1) Unit construction

In order to prevent the temperature inside the locker and around the unit body from rising by the heat generated when loaded, the radiator and the resistor are separated from the radiating section.

A inlet and an outlet ports are provided on the rear face of the unit as shown in the external dimensions. When mounting the unit, set an angle steel in the vertical direction taking the ventilation route into consideration, then fix the unit to this angle using a bolt.

(2) Mounting a unit

As the unit is heavy, it is recommended to observe the following points when the unit is mounted to the locker.

- ① The unit is designed basically to be suspended by the eye bolts located above. Therefore, it is desirable to mount the unit keeping it suspended.
- If it is difficult to mount the unit keeping it suspended, it is recommended to attach the bottom plate temporarily using the M8 auxiliary tap holes on the lower side of the unit, and then mount the unit by lifting it up with a fork-lift or the like.
- In both cases mentioned above, it is recommended to provide a guide piece for positioning at the bottom end of the unit.

8.5 Sealing

8.5.1 AC spindle servo unit models 1S - 3S, small type model 6S

When an AC spindle servo unit is mounted, seal between the unit and the mounting panel to prevent the unit from oil, dust and the like.

It is recommended to attach a packing with the specification shown below by the machine manufacturer.

8.5.2 AC spindle servo unit models 6S - 26S, small type models 15S, 30S

When an AC spindle servo unit is mounted, it is recommended to attach a packing (acrylonitrilebutadiene robber (NBR) soft type) by the machine manufacturer to prevent the unit from oil, dust and the like.

8.5.3 AC spindle servo unit models 30S, 40S

When it is needed to seal the unit body side and the rear side completely, attache the following sealing tape on the outer circumference on the rear side.

8. EXTERNAL DIMENSIONS AND MAINTENANCE AREA

Nitto Ept Sealer (by NITTO DENKO)

Width	10mm
Thickness	5mm
Length	4m

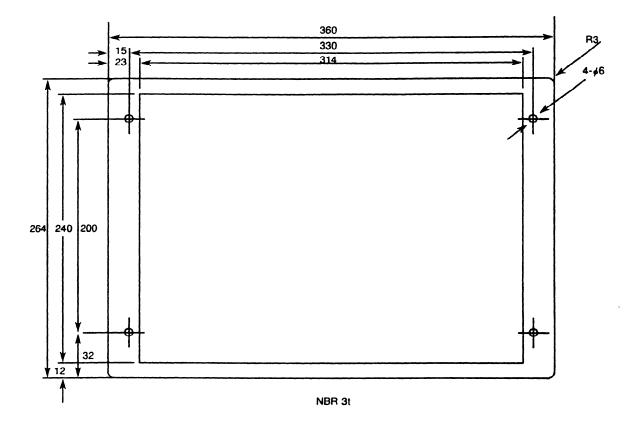
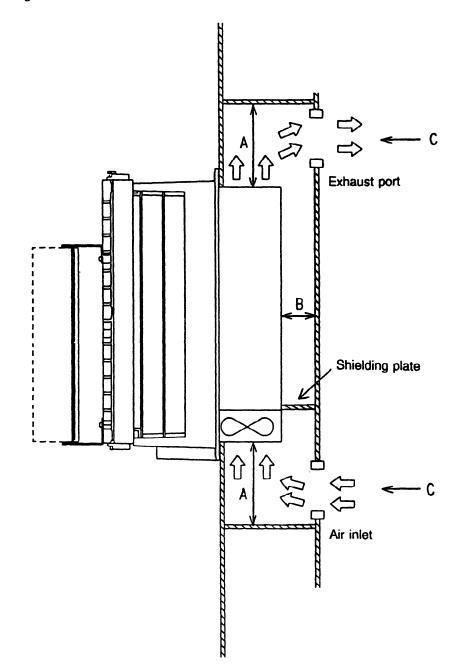



Figure 8.5.1 Example packing (for models 1S - 3S, small type model 6S)

8.6 Consideration to Inlet and Outlet Ports

8.6.1 AC spindle servo unit models 1S - 3S, small type model 6S

The AC spindle servo unit has such a construction that the radiating section of the power circuit section, the main heat generating section, is externally cooled by a built-in fan motor. Therefore, give consideration to the inlet and output ports so that a sufficient wind speed may be obtained for forced-air cooling.

- A: Keep apart 100mm or more.
- B: As the radiating section becomes very hot, give careful consideration to space.
- C: Keep 15,000mm² or larger.

9. CONNECTION

9.1 Connection Diagram

9.1.1 Motor model 0.5S (Amplifier model 1S)

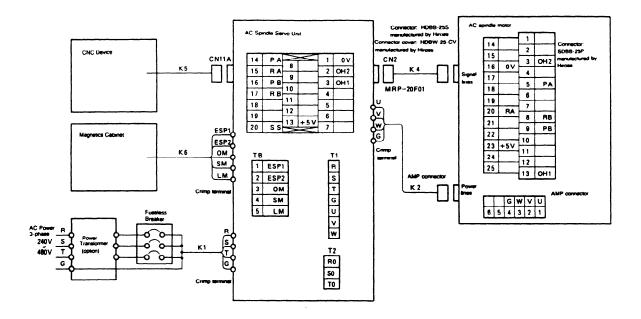
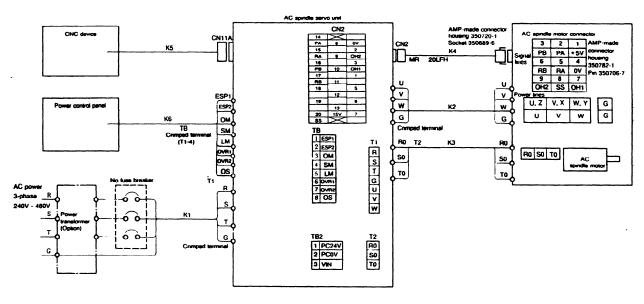
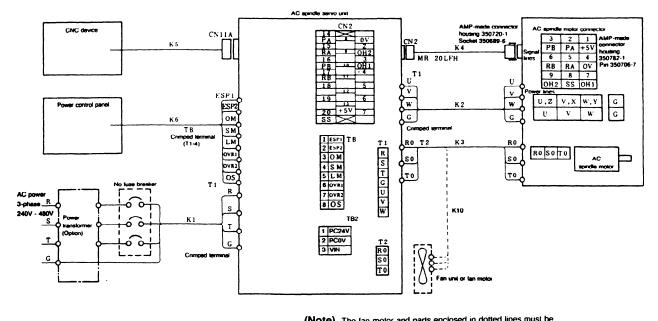
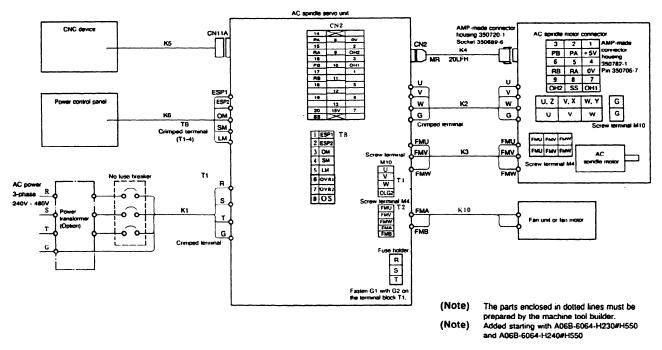


Fig. 9.1.1 Connection diagram (Models 0.5S, Amplifier model 1S)

9.1.2 Motor models 1S - 3S, small type model 6S

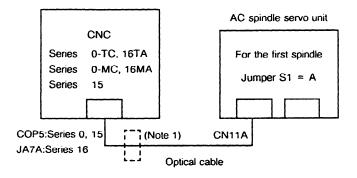




Fig. 9.1.2 Connection diagram (Models 1S - 3S, small type model 6S)

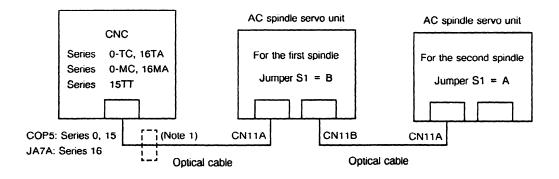
9.1.3 Motor models 6S - 26S, small type model 15S, small type model 30S

(Note) The fan motor and parts enclosed in dotted lines must be prepared by the machine tool builder.

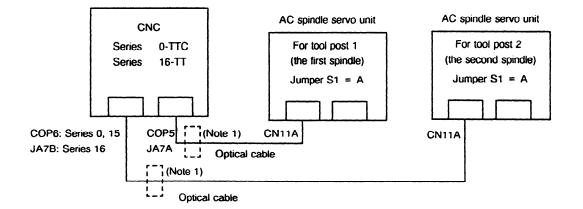
Fig. 9.1.3 Connection diagram (Models 6S - 26S, small type 15S, small type 30S)



9.1.4 Motor models 30S, 40S

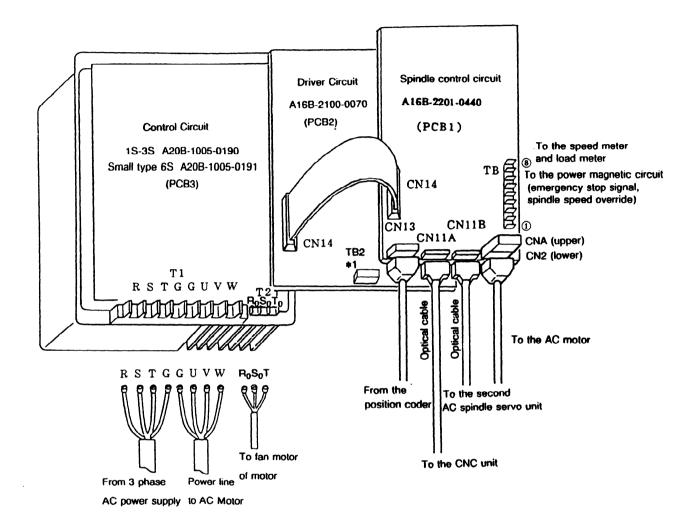

Fig. 9.1.4 Connection diagram (Models 30S, 40S)

9.1.5 Connection between the CNC and AC spindle servo unit


- (1) For the Series 0-TC, 0-MC, 15, and 16
- (a) When one AC spindle servo unit is used

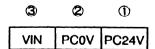
(b) When two AC spindle servo units are used

(2) For the Series 0-TTC, 16-TT



(Note 2) The parameter number for an AC spindle servo unit for tool post 2 is the same as that for the first spindle on the parameter screen for tool post 2.

(Note 3) When the second spindle is connected to a tool post, set jumper S1 for the AC spindle servo unit for the first spindle of the tool post to B.


9.2 Cable Routing

See Appendix 1.

9.2.1 Cable routing diagram of models 1S - 3S, small type model 6S

Change of pin arrangement in TB2 (*1) Printed circuit board with general version 02A or earlier

Printed circuit board with version 03A or later

1	0	3
PC24V	PC0V	VIN

Fig. 9.2.1 Cable routing (Models 1S - 3S, small type model 6S)

9.2.2 Cable routing diagram of models 6S - 12S, small type model 15S

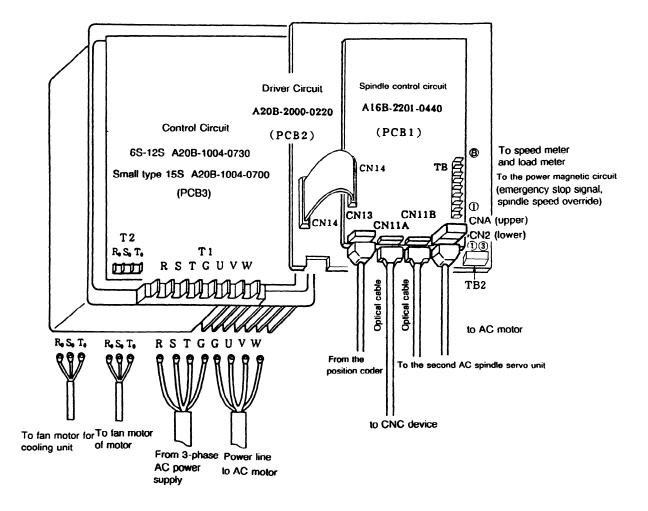
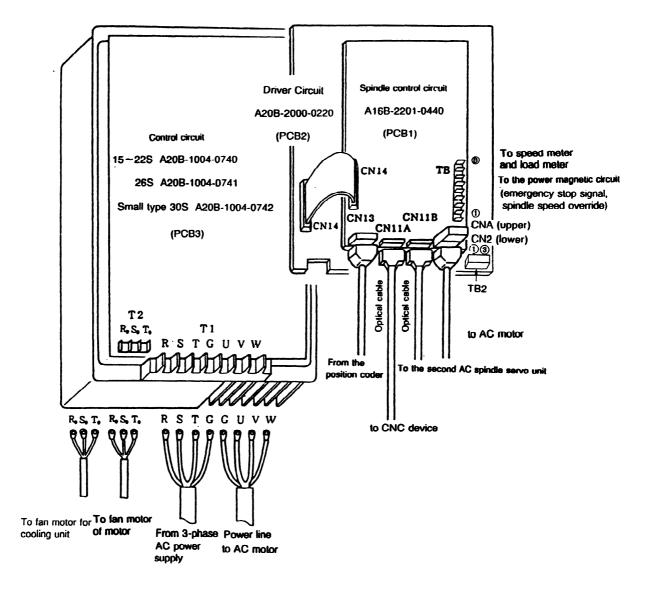
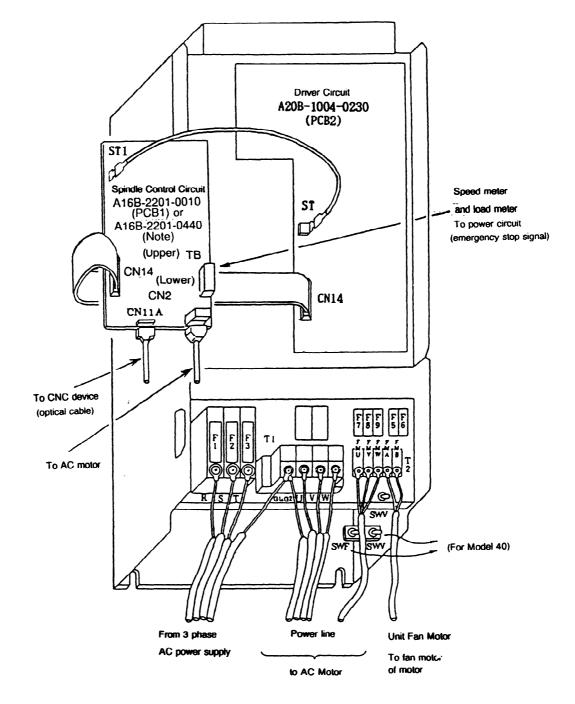




Fig. 9.2.2 Cable routing (Models 6S - 12S, small type 15S)

9.2.3 Cable routing diagram of models 15S - 26S, small type model 30S

Fig. 9.2.3 Cable routing (Models 15S - 26S, small type model 30S)

9.2.4 Cable routing diagram of models 30S, 40S

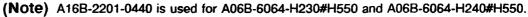
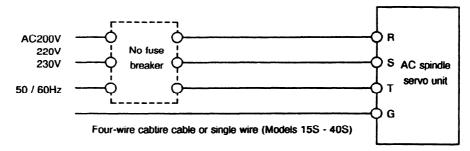
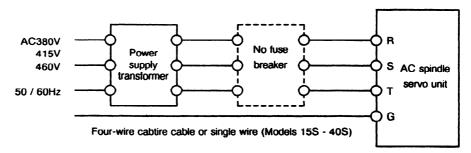
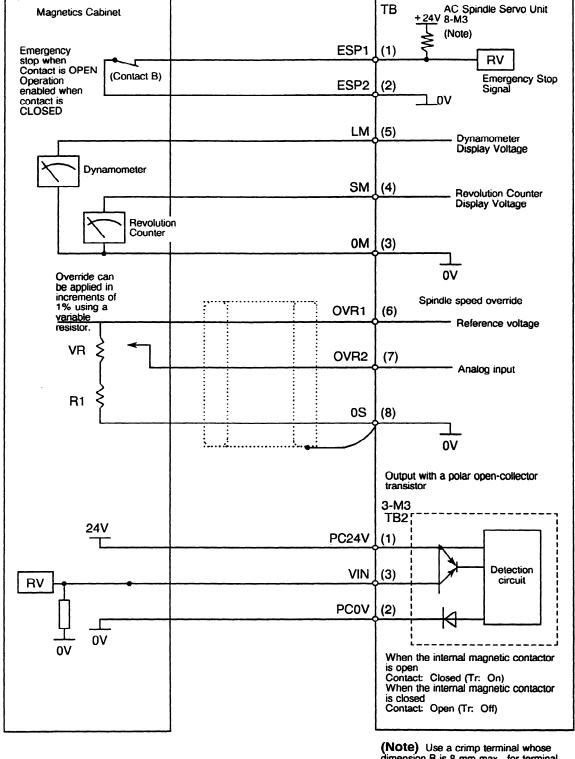



Fig. 9.2.4 Cable routing (Models 30S, 40S)


9.3 Detailed Connection Diagram

9.3.1 Connection of power source

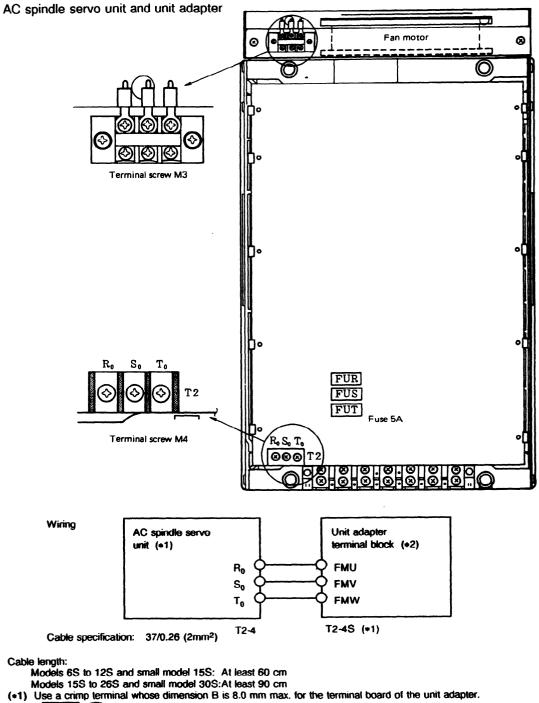
- (1) AC spindle servo unit Models 1S 40S
 - Without power transformer



• With power transformer

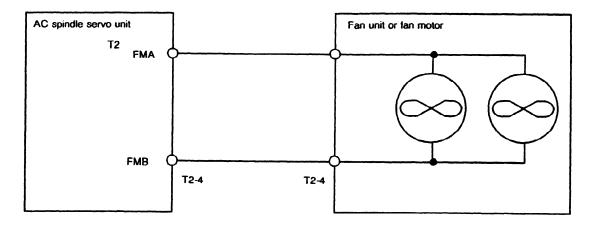
Model	Applicable wire		Unit terminal screw
1S	2 mm ² or more		M4
2S	3.5 mm ² or more		
3S	5.5 mm ² or more		
Small type 6S	8 mm ² or more		
6S	8 mm ² or more		
8S,12S	14 mm ² or more		М5
Small type 15S	Single wire of 14 mm ² or thicker (heat resistant) (*1)		
15S	Single wire of 14 mm ² or thicker (heat resistant) (+1)		
18S-26S	Single wire of 22 mm ² or thicker (heat resistant) (+1)		M8
Small type 30S	Between power suuply to amplifier	Single wire of 22 mm ² or thicker (heat resistant) (+1)	
	Between amplifier to motor	R,S,T : Single wire of 38 mm ² or thicker (heat resistant) (+1) G : Single wire of 22 mm ² or thicker (heat resistant) (+1)	M8
305	R,S,T : Single wire of 38 mm ² or thicker (heat resistant) (+1) G : Single wire of 22 mm ² (heat resistant)		M10
40S	R,S,T : Single wire of 50 mm ² or thicker (heat resistant) (•1) G : Single wire of 22 mm ² (heat resistant)		M10

(*1) Use the flame retardant poli-flex cable (MLFC)(Maximum temperature of conductor: 105°C)
 (Note) See sections about connection of each motor series for motor terminal screw.

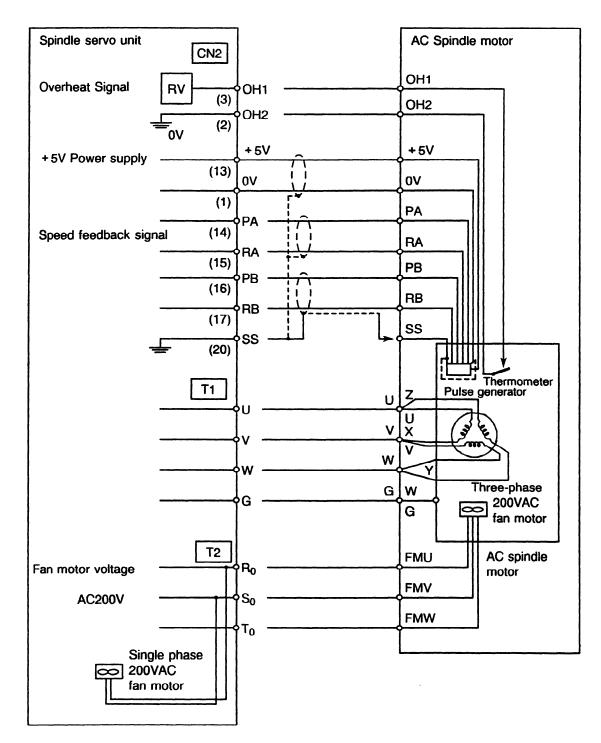

9.3.2 Connection of AC spindle servo unit and magnetics cabinet

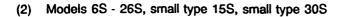
(Note) Use a crimp terminal whose dimension B is 8 mm max. for terminal board TB. Example: 1.25-3

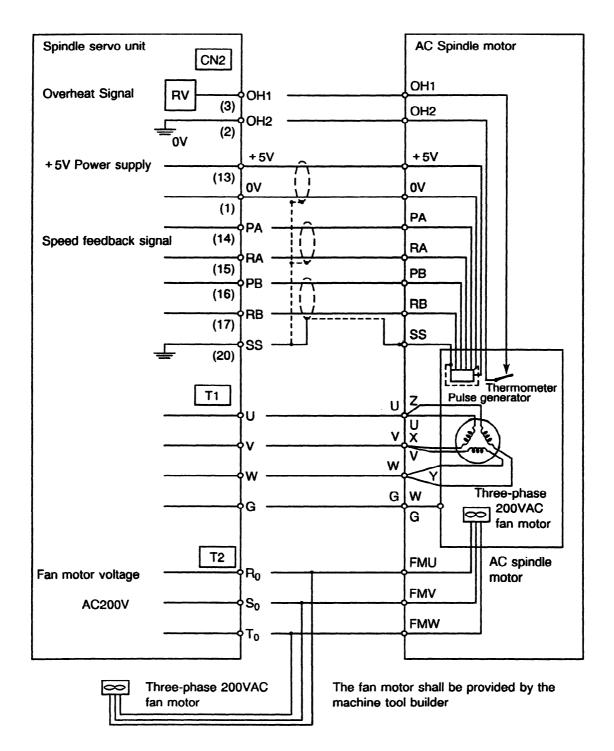
9.3.3 Connecting AC spindle servo unit with unit adapter (models 6S - 26S, small type model 15S, small type model 30S)


For connecting the unit adapter to the fan motor, use the terminal block T2 of the AC spindle servo unit for a fan motor. Fuses (FUR, FUS, FUT) are built in. (Fig. 9.3.3.)

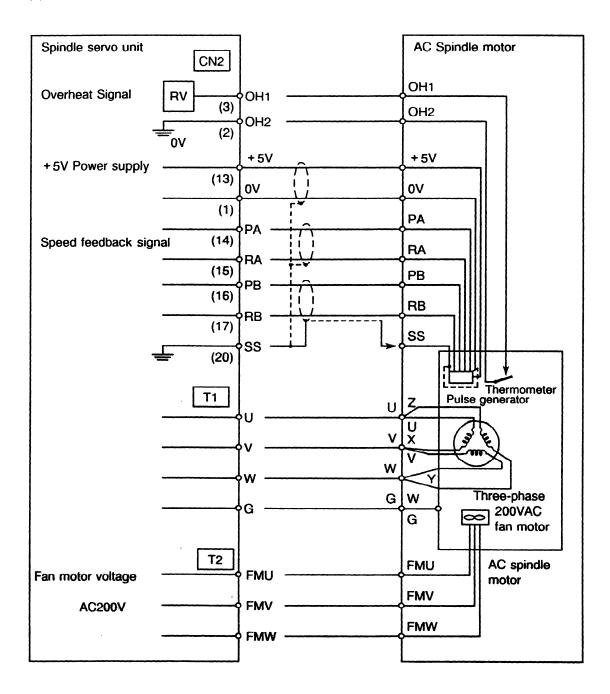
(+2) Two terminal boards, an upper board and lower board, are provided for small model 15S, models 15S to 26S, and small model 30S.

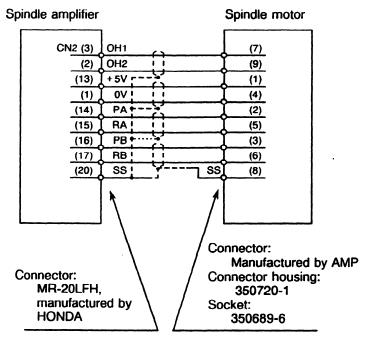

Connect the boards in parallel.


9.3.4 Connection diagram of AC spindle servo unit and fan unit (Models 30S, 40S)



9.3.5 Connection of AC spindle servo unit and AC spindle motor


(1) Models 1S - 3S, small type 6S

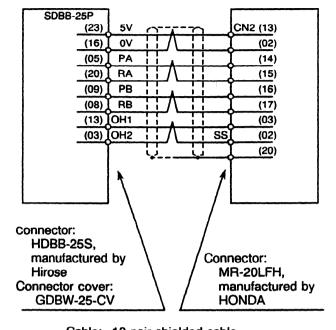

(3) Models 30S, 40S

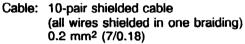
9.4 Cable

9.4.1 Details of cable K4

(1) For models 1S to 40S

Cable: 4-pair shielded cable PVC sheath shield braid conductor 0.3 mm² (12/0.18)


(Note) See 9.4.2 for Cable length of K4


(2) For motor model 0.5S

Spindle motor

Spindle amplifier

Connector manufactured by Hirose

(Note) See 9.4.2 for Cable length of K4

.

9.4.2 Cable length

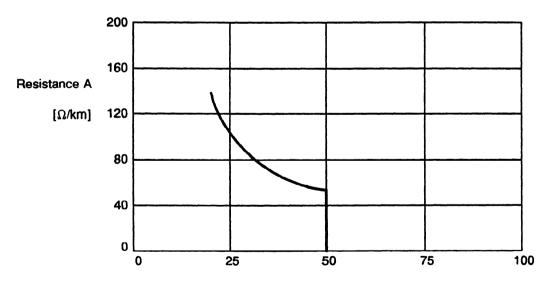
Specifications of the pulse generator

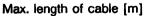
Internal impedance	165.2 Ω
Current used	28.75 mA

The total voltage drop across a cable both ways must not exceed 0.15 V max.

If a cable with resistance A is used, the maximum length of the cable one way is determined using the formula:

$$L = \frac{2608.7}{A}$$

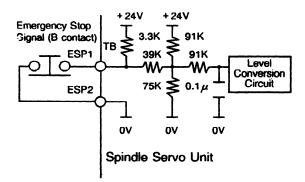

L: Maximum cable length [m]


A: Resistance of a cable used $[\Omega/km]$

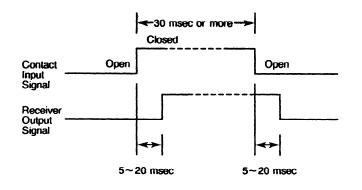
Reference: Cable resistance

7/0.18 (0.2mm²)	• • • • • •	$110\Omega/km$
12/0.18 (0.3mm ²)		66 Ω/km
10/0.18 (0.5mm²)		40 Ω/km

The following figure shows the relationship between resistance and the maximum cable length.


(Note) A cable must not exceed 50 m.

10. INTERFACE SIGNALS


10.1 Emergency Stop Signals (ESP1,ESP2) - Contact Input Signal-

A terminal is provided in the hardware of the AC spindle servo to switch the electromagnetic contacter OFF in the event of an emergency stop. Be sure to use this terminal.

- (1) The spindle motor and servo unit become operable when the contact is ON (i.e., CLOSED). When the contact is OFF (i.e., OPEN), the contacter within the servo unit is turned OFF, and the spindle motor will not operate.
- (2) Turning the contact OFF (OPEN) when the motor is operating causes the spindle motor to quickly lose speed and stop. After it has stopped, the electromagnetic contacter switches OFF.
- (3) If the contact is then switched ON (CLOSED) again, the spindle motor enters the rotatable state, and so will begin to rotate as soon as a rotation command is issued. For this reason, the command signal (speed command, normal operation command, or reverse operation command) to the spindle servo unit should be reset at the same time an emergency stop signal is input.

- (4) The environment of the contact input signal is as follows:
 - (a) The external contact rating must be 30V or more, 16mA or more.
 - (b) The delay of the output signal from the receiver in response to the contact input signal is shown in the diagram below.

This means that when the contact input signal switches ON or OFF, the signal is actually received by the servo unit 5-20msec later.

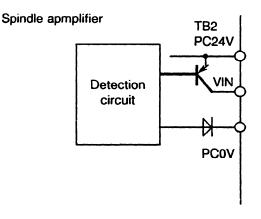
(c) The receiver circuit on the servo unit side is organized as shown in the above figure. Use this information when using noncontact input, etc.

Significant Level with No Contact (at voltage between input terminals)LOW level "Logic 0":2V or lessHIGH level "Logic 1":20V or more

10.2 Signals for Checking the Contact of the Magnetic Contactor in the Spindle Amplifier (VIN, PC24V, and PC0V) for models 1S to 26S

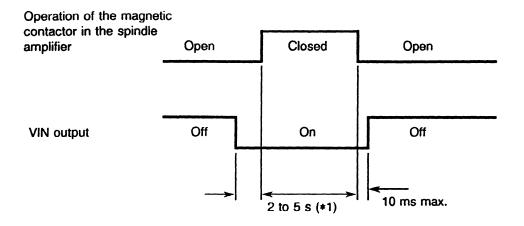
These signals check the status of the contact of the magnetic contactor in the spindle amplifier.

(1) When the magnetic contactor in the spindle amplifier turns off (contact open), the signal turns on (closed).


When the magnetic contactor in the spindle amplifier turns on (contact closed), the signal turns off (open).

(2) The signals are output from the spindle with the polar open-collector transistor.

The output rating is as follows:


- i. Rated voltage: 50 VDC max.
- ii. Output current: 100 mADC max.
- iii. Saturation current: -0.25 V max. (Ic = 10 mA)
- (3) The polarity of the signals is as follows:

Polarity								
Positive (+)	Negative (-)							
PC24V	VIN							
	PC0V							

(4) Detection circuit

Consumption current: 5 mA max.

(+1) The VIN signal is output before the magnetic contactor is turned on (contact closed) according to the precharge circuit operation for an electrolytic capacitor.

10.3 Spindle Control Signals

The abbreviations used in this manual stand for the following:

- PM: Power Mate
- 0C: Series 0-MC or 0-TC
- OTTC: Tool post 2 of Series 0-TTC
- 15: Series 15
- 16: Series 16

PM 0C 0TTC HEAD2	15 1	6 (*2) 7	6	5	4	3	2	٦	0
G112 G229 G1429 (G227 G0	70 MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
G113 G230 G1430 (G226 G0	71 RCHA	RSLA	INTGA	SOCNA	MCFNA	SPSLA	+ESPA	ARSTA
G114 G231 G1431 (G229 G0	72 RCHHGA	MFNHGA	INCMDA	OVRA	DEFMDA	NRROA	ROTAA	INDXA
G115 G232 G1432 (G228 G0	73					MPOFA	SLVA	MORCMA
G072 G124 G1324	GO	32 R08I	R071	R061	R051	R041	R03I	R021	R01I
G073 G125 G1325	GO	33 SIND	SSIN	SGN		R12I	R11)	R101	R091
C	G024	RISGN			RI12	RI11	RI10	R109	R108
C	G025	R107	R106	R105	RI04	R103	R102	RI01	R100
G110 G1310 (G231 G0	78 SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
G111 G1311 (G230 G0	79				SHA11	SHA10	SHA09	SHA08
G083 G103 G1303				SPC	SPB	SPA			
G120		SOVE	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
C	G029						SPC	SPB	SPA
	G0	30 SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
G068 G120 G1320			+SSTP	SOR	SAR	FIN			
c	G005							FIN	
	G0	29	+SSTP	SOR	SAR				
	G0	04				FIN			
G123 G1323 (*1)		CON(M)	SPSTP	*SCPF	*SUCPF	GR2	GR1		COFF(T)
G118 G1318 (*1)						GR2	GR1		
()	G0	27 CON(T/M)						
C	G67, 71 .	. SCNTR	l 1, 2						
G146	G0	38				SPPHS	SPSYC		
G	G111	SPPHS	SPSYC						
G123 (*3)								RGTP	
(+3) G099 G135 (+3)	G0	61			-				RGTAP
	3026		GS4	GS2	GS1	*SECLP	*SEUCL		SPSTP

10.3.1 First spindle control DI signal (PMC to CNC)

(*1) Depends on bit 5 (ADDCF) of parameter 31

(*2) Refer to the manual B-61803E/03 or later for DI/DO address of 16-TT on the HEAD2 side.

(*3) Depends on bit 4 (SRGTP) of parameter 19

РМ		0TTC HEAD2	15	16	7	6	5	4	3	2	1	0
		LADE		G028		SPSTP	+SCPF	+SUCPF		GR2	GR1	
	G104							ESRSYC				
	G145	G1345			GR31	GR21	+SSTP3	+SSTP2	+SSTP1	SWS3	SWS2	SWS1
				G027			+SSTP3	+SSTP2	+SSTP1	SWS3	SWS2	SWS1
				G029						GR31		GR21
	G146	G1346		G028	PS2SLC							

10.3.2 Second spindle DI signal (PMC to CNC)

0C 0TTC 15 HEAD2	16	7	6	5	4	3	2	1	0
G233 G1433 G235	G074	MRDYB	ORCMB	SFRB	SRVB	CTH1B	CTH2B	TLMHB	TLMLB
G234 G1434 G234	G075	RCHB	RSLB	INTGB	SOCNB	MCFNB	SPSLB	+ESPB	ARSTB
G235 G1435 G237	G076	RCHHGB	MFNHGB	INCMDA	OVRB	DEFMDB	NRROB	ROTAB	INDXB
G236 G1436 G236	G077						MPOFB	SLVB	MORCMB
G112 G1312 G239	G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB00
G113 G1313 G238	G081					SHB11	SHB10	SHB09	SHB08
G106 G1306	G034	M2R08i	M2R07I	M2R06I	M2R051	M2R041	M2R03I	M2R02I	M2R011
G107 G1307	G035	M2SIND	M2SSIN	M2SGN		M2R12I	M2R11I	M2R10I	M2R091
G108 G1308	G036	M3R08I	M3R07I	M3R061	M3R05I	M3R041	M3R03I	M3R02I	M3R011
G109 G1309	G037	M3SIND	M3SSIN	M3SGN		M3R12I	M3R11I	M3R10I	M3R09I

Spindle control DI signals

Symbol	Signal	Description
TLMLA, B	Torque limit command (low)	Limits the output torque of the spindle motor. Set the limit using the spindle parameter. TLML TLMH 0 0 : No torque limit
TLMHA, B	Torque limit command (high)	0 1 : Limits the torque to the value specified with the parameter. 1 0 : Limits the torque to half of the value for TLMH. 1 1 : Limits the torque to half of the value for TLMH.
CTH1, 2A, B	Clutch or gear signal	Specify one of the following conditions according to the clutch or gear status. Used to select a spindle control parameter. CTH1 CTH2 0 0 : High gear 0 1 : Medium high gear 1 0 :
SRVA, B	Reverse rotation command	Specifies the rotation direction when the spindle motor is viewed from the shaft.
SFRA, B	Normal rotation command	SRV SFR 0 0 : Stop 0 1 : Normal rotation (CCW: Counterclockwise) 1 0 : Reverse rotation (CW: Clockwise) 1 1 : Stop
ORCMA, B	Spindle orientation command	Used for spindle orientation control. 0 : - 1 : Spindle orientation control is performed.
MRDYA, B	Machine ready signal	Used to open or close the magnetic contactor in the spindle servo unit. 0 : The magnetic contactor is opened. 1 : The magnetic contactor is closed.
ARSTA, B	Alarm reset signal	Used to reset the spindle alarm. 32 ms min. "1" The alarm is reset when the level of the signal "0" is changed from 1 to 0.
*ESPA, B	Emergency stop signal	0 : Emergency stop 1 : Normal operation
SPSLA, B	Spindle select signal	0 : Main spindle 1 : Sub spindle
MCFNA, B	Power line change completion signal	0 : Main spindle 1 : Sub spindle
SOCNA, B	Soft start/stop cancel signal	0 : The soft start/stop function is canceled.1 : The soft start/stop function is enabled.
INTGA, B	Velocity integral control signal	0 : Velocity integral control is enabled. 1 : Velocity integral control is disabled.

Symbol	Signal	Description
RSLA, B	Output change request signal	0 : High-speed output characteristics1 : Low-speed output characteristics
RCHA, B	Power line status check signal	0 : High-speed output characteristics1 : Low-speed output characteristics
INDXA, B	Orientation stop position change signal	"1" New stop position data is obtained when "0" New stop position data is obtained when the level of the signal is changed from 1 to 0. Then, the spindle is moved to the new stop position, and is stopped.
ROTAA, B	Rotation direction command while changing the orientation stop position	0 : CCW (counterclockwise) 1 : CW (clockwise)
NRROA, B	Short-distant movement command while changing the orientation stop position	0: The rotation direction depends on the setting of ROTA (= bit 1) 1: Short-distance movement control (within $\pm 180^\circ$)
DEFMDA, B	Differential mode command	1: Differential control mode
OVRA, B	Analog override command	0 : Analog override is disabled. 1 : Analog override is enabled.
INCDA, B	Incremental command	 Incremental command spindle orientation Usual orientation
MFNHGA, B	Main-spindle MCC status signal while changing spindles	0: The MCC in the main spindle is opened.1: The MCC in the main spindle is closed.
RCHHGA, B	High-output MCC status signal while changing output	0: The MCC for high output is opened.1: The MCC for high output is closed.
MORCMA, B	Command for spindle orientation with a magnetic sensor	1: Spindle orientation with the magnetic sensor is controlled.
SLVA, B	Slave operation command	1 : Slave operation is controlled.
MPOFA, B	Motor power stop signal	1 : Motor power stop
R12I - R01I SGN, SSIN SIND RI12 - RI00 RISGN	Spindle speed command	Specifies a spindle speed command.
SHA11 - SHA00 SHB11 - SHB00	Stop position command for spindle orientation with a position coder	The stop position is specified externally spindle orientation with the position coder.
*SSTP	Spindle stop signal	0 : Velocity command voltage = 0 1 : Velocity command voltage = specified value
SOR	Spindle orientation in progress	1: Outputs the velocity command specified with the parameter.
SAR	Velocity reached signal	1: The actual spindle speed reaches the specified speed.

Symbol	Signal	Description
FIN	M function completion signal	1: The M function is completed.
CON, COFF SCNTR1, 2	Cs contour control command	Specifies the Cs contour control mode .
GR1, 2 GS1, 2, 4	Gear select signal (T- system)	Used for velocity command calculation under constant surface speed
+SUCPF +SEUSL	Spindle unclamp signal	Used for spindle positioning control
+SCPF +SEUCL	Spindle clamp signal	
SPSTP	Spindle stop check signal	
SPSYC	Spindle speed synchronization control command	1 : Spindle speed synchronization control
SPPHS	Spindle phase synchronization control command	1 : Spindle phase synchronization control
RGTP RGTAP	Rigid tapping command	1: Rigid tapping control

	0TTC HEAD2	15	16	7	6	5	4	3	2	1	0
F228 F281		F229	F045	ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
F229 F282	F1482	F228	F046	MOAR2A	MOAR1A	POAR2A	SLVSA	RCFNA	RCHPA	CFINA	СНРА
F230 F283	F1483	F231	F047							INCSTA	PC1DTA
F216 F172	F1372		F036	R08O	R070	R06O	R050	R040	R030	R02O	R010
F217 F173	F1373		F037					R120	R110	R100	R090
		F010 F006)		RO15	RO14	R013	RO12	R011	RO10	R009	RO08
		F011 F007)		R007	R006	R005	R004	R003	R002	R001	RO00
F194 F150		1007)	F007						SF		MF
		F008								SF	MF
F193 F149	F1349		F001				ENB				
F164	F1364		F038					ENB3	ENB2	SCLP	SUCLP
		F042			SPCO	SPBO	SPAO		SPAL	SSLP	SUCLP
F154	F1354		F035								SPAL
F196 F152	F1352		F034						GR30	GR20	GR10
		F001		CSS							
			F002						CSS		
F178			F044				SYCAL	FSPPH	FSPSY	FSCSL	
		F67, 7	'n	MCNTR1,	2						
		F111		MSPPHS	MSPSYC	SPSYAL					
		F040					RTAP				
		F020	F025	S31	S30	S29	S28	S27	S26	S25	S24
		F021	F024	S23	S22	S21	S20	S19	S18	S17	S16
		F022	F023	S15	S14	S13	S12	S11	S10	S09	S08
		F023	F022	S07	S06	S05	S04	S03	S02	S01	S00
		F012	F041	AR15	AR14	AR13	AR12	AR11	AR10	AR09	AR08
		F013	F040	AR07	AR06	AR05	AR04	AR03	AR02	AR01	AR00

10.3.3 First spindle control DO signals (CNC to PMC)

The codes for Series 15-TT are enclosed in parentheses.

0C	0TTC HEAD2	15	16	7	6	5	4	3	2	1	0
		F232	32	SLDM15	SLDM14	SLDM13	SLDM12	SLDM11	SLDM10	SLDM09	SLDM08
		F233		SLDM07	SLDM06	SLDM05	SLDM04	SLDM03	SLDM02	SLDM01	SLDM00
		F234		SSPD15	SSPD14	SSPD13	SSPD12	SSPD11	SSPD10	SSPD09	SSPD08
		F235		SSPD07	SSPD06	SSPD05	SSPD04	SSPD03	SSPD02	SSPD01	SSPD00
		F236		SSPAA7	SSPAA6	SSPAA5	SSPAA4	SSPAA 3	SSPAA2	SSPAA1	SSPAA0

10.3.4 Second spindle control DO signals (CNC to PMC)

	0TTC HEAD2	15	16	7	6	5	4	3	2	1	0
		F245	F049	ORARB	TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
F286	F1486	F244	F050	MOAR2B	MOAR1B	POAR2B	SLVSB	RCFNB	RCHPB	CFINB	СНРВ
F287	F1487	F247	F051							INCSTB	PC1DTB

Spindle control DO signals

Symbol	Signal	Description
ALMA, B	Alarm signal	Output when a spindle alarm occurs. 0 : Normal state 1 : Alarm state
SSTA, B	Speed zero detection signal	Output when the actual spindle motor speed does not exceed the speed zero detection level. 1 : Zero speed
SDTA, B	Speed detection signal	Output when the actual spindle motor speed does not exceed the preset speed. 1 : Less than preset speed
SARA, B	Speed match signal	Output to the velocity command when the actual spindle motor speed reaches the preset range. 1 : Speed match
LDT1A, B	Load detection signal 1	Output when the detected load is greater than the specified load detection level. LDT1 and LDT2 can be set to a different level. 1 : Greater than the specified load
LDT2A, B	Load detection signal 2	Output when the detected load is greater than the specified load detection level. 1 : Greater than the specified load
TLM	Torque limiting signal	1: The limit is applied to the torque.
ORAR	Orientation complete signal	Output when the spindle stops near the specified position after the orientation command is entered. 1: Orientation is completed.
СНРА	Power line change signal	0 : Main spindle 1 : Sub spindle
CFIN	Spindle change completion signal	0 : Main spindle 1 : Sub spindle
RCHP	Output change signal	0 : High-speed output characteristics1 : Low-speed output characteristics
RCFN	Output change completion signal	0 : High-speed output characteristics1 : Low-speed output characteristics
SLVSA, B	Slave operation status	1 : Slave operation status
PRAR2A, B	Signal for approximate spindle orientation with a position coder	1: Near the orientation stop position
MOAR1A, B	Signal for completion of spindle orientation with a magnetic sensor	1: Completion of orientation
MOAR2A, B	Signal for approximate spindle orientation with a magnetic sensor	1: Near the orientation stop position
PC1DTA, B	Signal indicating the status of the detected one-rotation position coder signal	1: Status of the detected one-rotation position coder signal

Symbol	Signal	Description
INCSTA, B	Incremental method orientation signal	1 : Under incremental method spindle orientation
R120 - R010 R015 - R000	Spindle speed command	Outputs the spindle speed command.
MF	M function strobe signal	1 : The M code is effective.
SF	Spindle function strobe signal	1: The S code is effective.
ENB	Spindle enable signal	0: The velocity command indicates 0.1: The velocity command indicates other than 0.
SUCLP	Spindle unclamp completion signal	1: Unclamping the spindle is completed.
SCLP	Spindle clamp completion signal	1: Clamping the spindle is completed.
SPAL	Spindle fluctuation alarm signal	1: The actual speed of the spindle is out of the allowed range.
SPAO, SPBO SPCO	Spindle speed override check signal	
GR10, 20, 30	Gear select signal	
CSS	Constant surface speed control signal	1 : Under constant surface speed control
FSCSL NCBTR1, 2	Cs contour control signal	1 : Under Cs contour control
FSPSY MSPSYC	Spindle synchronization control signal	1 : Under spindle synchronization control
FSPPH MSPPHS	Spindle phase synchronization control signal	1: Under spindle phase synchronization control
SYCAL SPSYAL	Spindle synchronization control alarm signal	1 : Spindle synchronization control alarm
RTAP	Rigid tapping signal	1: Rigid tapping in progress
S31 - S00	Spindle function code signal	
AR15 - AR00	Actual spindle speed signal	
SLDM15 - SLDM00	Load meter data	0 to 32737 (+10 V)
SSPD15 - SSPD00	Motor speed data	0 to 16384 (maximum motor speed)
SSPAA7 - SSPAA0	Spindle alarm data	Alarm number

.

(Note) Up to now TLML (torque restriction command signal) has been set to ON when performing rigid tap for the spindle amplifier, but now in the serial interface spindle amplifier it is not necessary to set the TLML signal to ON.

10.4 Detailed Explanation of Spindle Control Signal

10.4.1 Torque restriction command signal (TLMLA, TLMHA)

- (1) The torque restriction (torque limit) is used in order to rotate the spindle motor to temporarily reduce the spindle motor output torque at such times as machine type spindle orientation.
- (2) Set the rotation speed at orientation and the output torque at orientation of each machine type at the machine manufacture in order to lessen shocks even when hitting the machine stopper.
- (3) It is possible to adjust the output torque at orientation by parameter
- (4) If the torque restriction command is 1, the torque restriction state occurs. Even if commanded during motor rotation it will be immediately enabled. If the torque restriction state occurs, the torque restriction signal (TLMA) is immediately transmitted to the outside.
- (5) At the time of performing machine type orientation at the machining center ATC, consider the following points when designing the magnetics cabinet sequence such that damage does not occur to the machine stopper.
 - ① The output torque at orientation should not be excessive.
 - ② The rotation speed at orientation should not be excessive. For example, when the rotation speed is excessive at the speed detection signal, the interlock should be set such that the stopper does not emerge.
 - ③ When the torque restriction is released, the stopper should be securely stored.

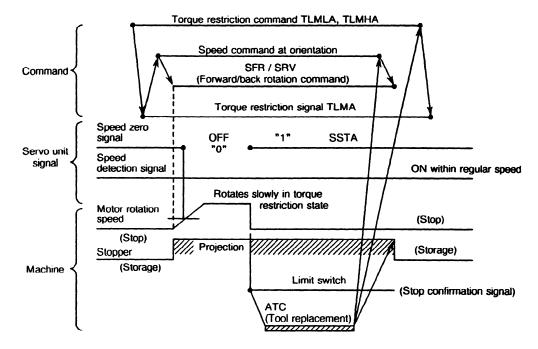
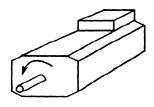
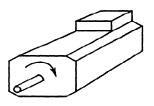



Fig. 10. 4. 1 Example of machine type orientation sequence

When the conditions desicribed on the privious page are difficult, use the purely electric type spindle orientation (option) which does not use a stopper.

10.4.2 Forward rotation command signal (SFRA)


- (1) When the following four conditions hold, the spindle motor starts a forward rotation corresponding to the speed command (positive value).
 - ① Emergency stop signal *ESPA is 1
 - ② Machine ready signal MRDYA is 1
 - ③ Forward rotation command signal SFRA is 1
 - ④ Contact signal ESP1, 2 (TB) is ON (closed)
- (2) While SFRA = 1, the spindle motor rotates in an counterclockwise direction (CCW) viewed from the shaft side according to the commanded speed (positive value).

(3) If SFRA = 0 occurs, the spindle motor stops by the regenerative braking. After stopping, it cuts the power supply to the spindle motor by intercepting the transister excitation signal.

10.4.3 Reverse rotation command signal (SRVA)

- (1) When the following four conditions hold, the spindle motor starts a reverse rotation corresponding to the speed command (positive value).
 - Emergency stop signal *ESPA is 1
 - ② Machine ready signal MRDYA is 1
 - ③ Forward rotation command signal SFRA is 1
 - ④ Contact signal ESP1, 2 (TB) is ON (closed)
- (2) While the contact is ON (closed), the spindle motor is rotated in a clockwise direction (CW) looked at from the shaft side according to the speed command (Positive value).

(3) When the forward rotation command signal (SFRA) and the reverse rotation command signal (SRVA) are simultaneiusly ON, the spindle motor stops.

10.4.4 Machine ready signal (MRDYA)

	Paramet	er setting					
Mode	Mode Series15:3001-bit0 Series15:3001-bit1 Series0:6501-bit0 Series0:6501-bit1		Contents				
(A)	0	0 or 1	At this time, the s	signal is not used. spindle motor enters the operable state only y stop signal is input.			
(B)	1	0	Uses the machine ready signal to create operable state	Performs motor power interception by electromagnetic contactor OFF with MRDYA = 0.			
(C)	1	1	- by double signal.	Performs power interception by switching the inverter section transistor excitation signal interception with MRDYA = 1. At this time, the electromagnetic contactor remains ON.			

(1) The table contents result from the parameter setting.

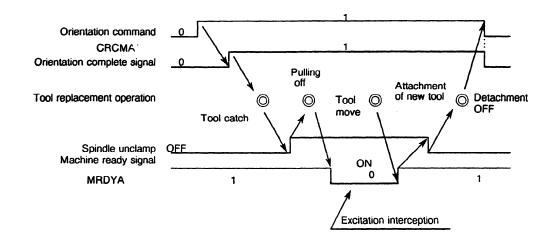
(Note) The method of using the machine ready signal in the various modes is as shown in (2)-(4).

(2) Mode (A)

Used when minimizing the input signal.

- (3) Mode (B)
 - ① When controlling the operable state by the double signal. Used when necessary to install in 2 locations (1 is the emergency stop signal, the other 1 is the machine ready signal) the electromagnetic contactor ON/OFF signal input terminals for machines when the operator directly touches the spindle by hand in order to connect/disconnect the workpiece and tool.
 - ② Electromagnetic contactor becomes ON by MRDYA = 1, and motor enters the operable state.
 - ③ Electromagnetic contactor becomes OFF by MRDYA = 0, and power to the motor is intercepted.
 - If MRDYA = 0 is set during motor rota-tion, the spindle motor smoothly decelerates and stops. After stopping, set the electromagnetic contactor to OFF.
 - S Arising from the restrictions of the open/close life of the electromagnetic contactor, do not use in such a manner that there is a high frequency of open/close of over a few hundred times in one day.

- (4) Mode (C)
 - ① Used when it is anticipated that there will be a high frequency of open/close of the electromagnetic contactor.
 - ② During the automatic tool replacement (ATC) orientation operation, in a machine where the spindle motor is restrained by the tool unclamp signal, there are cases where the power measurement becomes large and a large motor current flows by a slight slip from the orientation stop position.


In order to prevent this, set CIRDYA = 0 and release the orientation state during tool unclamp.

- If MRDYA = 1 is set at tool unclamp end, it is possible to re-enter the orientation state.
- ③ Regarding the purpose of the above described ②, if the orientation command signal remains at ORCMA = 1, even if the machine ready signal is set to MRDYA = 0/1, there is no orientation again after 1 rotation as it only moves by the amount of the stop position slip.

Timing chart

[Conditions]

(Note) Perform by mode (C) parameter setting.

10.4.5 Alarm reset signal (ARSTA)

- (1) After removing the various alarm causes such as motor overheating, excess speed deviation, short-circuiting, excess speed, excess voltage, excess current, excess load, and voltage drop, if the alarm reset signal is inputted, the alarm is released and the usable state occurs.
- (2) Even if this signal isinputted when there is no alarm, it is disabled.
- (3) In the servo unit internal section also, there is a reset function, and the function is the same as this alarm reset signal.

10.4.6 Emergency stop signal (*ESPA)

- Spindle motor and servo unit enter the operable state by *ESPA = 1.
 In *ESPA = 0 the internal servo unit electromagnetic contactor is in the OFF state and the spindle motor does not operate.
- (2) If *ESPA = 0 is set during the motor rotation, the spindle motor smoothly decelerates to a stop. After stopping, the electromagnetic contactor enters the OFF state.
- (3) If *ESPA = 1 then occurs again, the spindle motor enters the rotateable state, and so will begin to rotate as soon as a rotation command is issued. For this reason, the command signal (speed command, normal operation command, or reverse operation command) to the spindle servo unit should be reset at the same time an emergency stop signal is input.

10.4.7 Spindle alarm signal (ALMA)

- (1) If the state occurs in which the spindle motor operation cannot be continuously executed, the power to the spindle motor will become OFF and the spindle motor will be stopped.
- (2) At the same time the alarm signal ALMA = 1 occurs. Regarding the alarm contents, confirm by the display section of the spindle amplifier.
- (3) Set the command signal to the spindle servo unit (speed command, forward/reverse rotation command, torgue limit command, spindle orientation command) in the reset state using the alarm signal output. If it is not in the reset state (state that signal from PMC device is all clear), when the alarm on the spindle amplifier is released there is a danger that the spindle motor may rotate.
- (4) Because the spindle motor enters the power OFF, coasting operates at the same time as the alarm signal is outputted, it is necessary to set in an emergency stop state and to set the feedhold state at the CNC or magnetics cabinet side.
- (5) When the alarm state has occurred, ALMA = 1 occurs. While the alarm signal is 1, the spindle motor enters coasting operates state regardless of any command from the outside.
- (6) The relationship between the alarm signal and the alarm reset signal is as shown in Fig. 10.3.7.

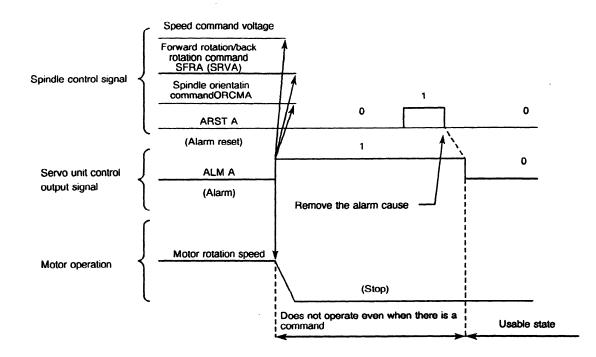


Fig. 10.4.7 Timing Chart of the Spindle Alarm Signal

10.4.8 Zero-speed detecting signal (SSTA)

(1) If the actual rotation speed of the spindle motor is reduced to be lower than the zero-speed detection point for the stop command, SSTA = 1 occurs.

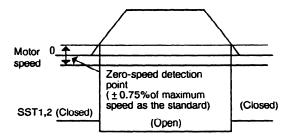


Fig. 10.4.8 Signal Indicating that the spindlespeed dropped to close to zero

- (2) The zero-speed detection point is fixed at 0.75% of the maximum speed as the standard. In other words, the zero-speed detection signal becomes DSTA = 1 when the rotation speed is lower than about 33, 45, or 60 min - 1.
- (3) This signal is outputted when the above condition is satisfied, irrespective of rotation commands (SFR, SRV).
- (4) The minimum pulse width value of this signal is about 40 ms. Refer to section 10.3.10 (5).

10.4.9 Speed detecting signal (SDTA)

- (1) SDTA = 1 occurs when the motor speed is lower than the speed which is set by parameter.
- (2) This signal is used to detect that the rotation speed has become lower than a certain speed set such as clutch selectable speed or gear selectable speed.
- (3) The speed detecting range can be set by parameter.

It is usually set 3% of the maximum speed in the case of gear change or 30% of the maximum speed in the case of clutch change.

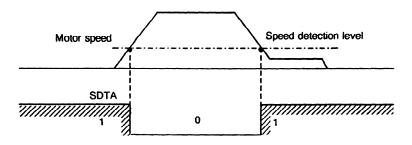
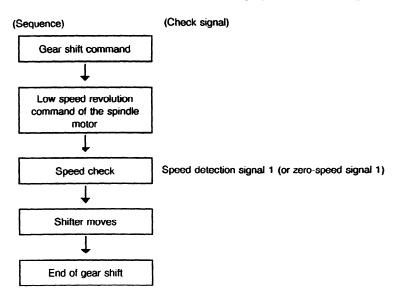


Fig. 10.4.9 (a) Speed Detection Signal


(4) For this signal, SDTA = 1 occurs when the absolute value of the motor speed is reduced to be lower than the preset detection level, irrespective of rotation commands (SFR, SV).

(Reference) Sequence of the gear shift

The gear shift in the CNC machine tool is one of the sequence controls. The electric circuit signal in the sequence is used to move the spindle gear, which is an important component of the machine. It is then necessary to check that the spindle motor revolution is in low speed to switch the gear safely.

The following is an example of sequence at gear shift, when the speed detection signal (gear selectable signal) was used. This example can be referred to when designing the magnetics sequencer.

① An example of gear shift sequence using speed detectionsignal

To change the gear safely, it must be checked that the spindle motor revolution is low enough before moving the shifter. If the zero-speed signal is also applied, the safety can be doubly checked.

(Essential reason) If the shifter moves when the spindle motor is rotating at high speed, the gear will break.

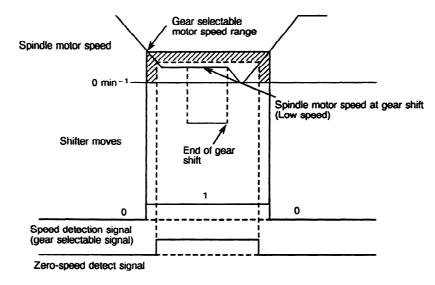


Fig. 10.4.9 (b) Speed Detection Signal

10.4.10 Speed arrival signal (SARA)

(1) SARA = 1 occurs when the actual rotation speed of the spindle motor arrives within the range set by the speed command.

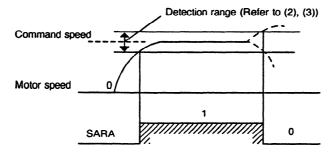


Fig. 10.4.10 (a) Speed-reached Signal 1

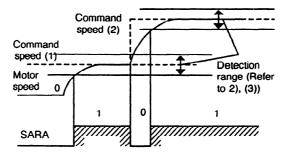


Fig. 10.4.10 (b) Speed-reached Signal 2

7 – 101

- (2) The setting range is ± 1 to 100% of the command speed. However, when the speed is less than 10% of the maximum rotation speed, the detection range becomes wider than the preset range.
- (3) The standard setting at shipment is ±15%. However, the detection range of this speed arrival signal at low speed widens as shown in the diagram below.Namely, the arrival signal is outputted when actual motor rotation speed is 435/60/80 min⁻¹ ±76% by a speed command of 45/60/80 min⁻¹.

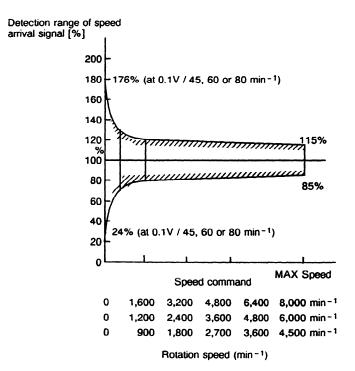
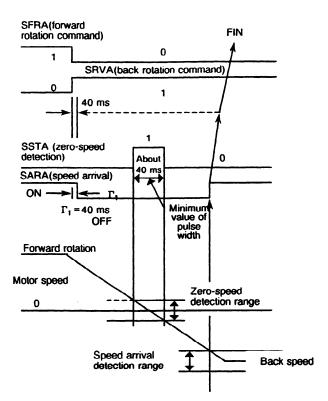
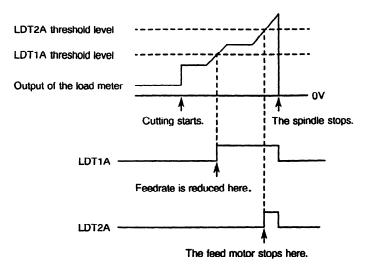



Fig. 10.4.10 (c) Detection Range of the Speed-reached Signal

- (4) If one of these signals, SFRA or SRVA, is not 1, it is not outputted.
- (5) It is possible to control the back rotation of the tapping cycle in the following manner by using this signal.

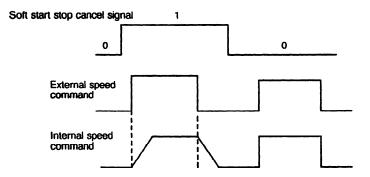
(Note) The time is delayed until the SARA signal becomes 0.


Fig. 10.4.10 (d) Timing Chart of the Speed-reached Signal

If the back rotation command is transmitted, the spindle motor starts deceleration and, because the arrival signal becomes 0 at under 40 ms, it next detects the speed arrival signal has again become 1 via speed zero and sets the end of the back command.

(6) This signal is used as the confirmation signal (FIN signal) for the forward rotation (M03) and back rotation (M04) commands.

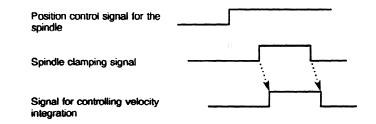
10.4.11 Load detection signal (LDT1A, LDT2A)


- (1) Assume that the maximum output (10 V) of the load meter is 100%. When the output of the load meter reaches the parameter settings (%), these signals are set to 1.
- (2) Parameter settings for these signals are set independently.
- (3) Using these signals, the PMC reduces the feedrate or stops the feed to prevent the spindle from stopping when cutting overload is applied to the spindle.
- (4) The following example shows the case in which the spindle is controlled with two load-detection levels set.

- (5) When using only one load-detection level to stop the feed motor, perform spindle control according to the specifications.
- (6) After the speed command is changed, this signal is not output until 10 seconds elapse. (The delay is specified by parameter 6582.)

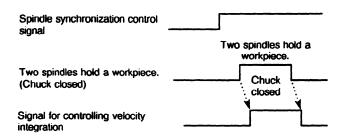
10.4.12 Soft start stop cancel signal (SOCAN)

- (1) If the soft start stop cancel signal becomes 0, the soft start stop function is disabled.
- (2) In the state that the soft start stop cancel signal is 1, the soft start stop function is enabled and the gradient of the speed command changing at acceleration/ deceleration can be set in the following manner.


- (3) If the emergency tsop signal input is set to ***ESPA=0**, the soft start stop function is automatically disabled.
- (4) The change in the speed to be specified is set by parameters. (For FS-0C, these parameters are 6530 and 6670.) Set the change to at least 1 when the soft start-stop function is enabled (SOCNA = 1).

10.4.13 Signal for controlling velocity integration (INTGA)

(1) When the position of the spindle is being controlled in a mode such as spindle orientation control, spindle index control, or Cs contour control mode, the spindle may be clamped with a brake.


If the spindle is kept clamped with a small positional deviation, the integration control for the velocity attempts to correct the deviation to zero, resulting in excessive flow of current into the motor.

Disabling the integration control for the velocity by setting this signal prevents excessive current from flowing into the motor when a small positional deviation exists.

(2) When two spindles hold a workpiece in the spindle synchronization control mode with a small synchronous error, the integration control for the velocity attempts to correct the error to zero, resulting in excessive flow of current into the motor.

Disabling the integration control for the velocity by setting this signal prevents excessive current from flowing into the motor when a small synchronous error exists.

10.4.14 Spindle override command (function) with analog input voltage (OVRA)

This function can be used only when unit A06B-6064-H3XX#H550 or A06B-6064-H230#H550, A06B-6064-H240#H550 is used.

- (1) In the normal speed control mode (including when the soft start/stop function is used), this function overrides speed, with analog voltage input from an external unit to the serial spindle amplifier.
- (2) The override function with analog input voltage is enabled when this signal is set to 1 in the normal speed control mode (including when the soft start/stop function is used).

1 : A limit of 120%

=

(3) A limit (100% or 120%) of this function is assigned to bit 5 of parameter No. 6506 in the Series 0C.

The maximum analog input voltage is +4.5 V. If an override speed exceeds the maximum speed, it is clamped by the maximum speed.

Parameter	РМ	0C	15	16	#7	#6	#5	#4	#3	#2	#1	#0
For the first spindle For the second spindle	3006	6506 6646	3006 3146	4006			bit5					
							bit5	=	0:/	A limit	of 100	

(4) The following figure shows a system configuration in terms of this function.)

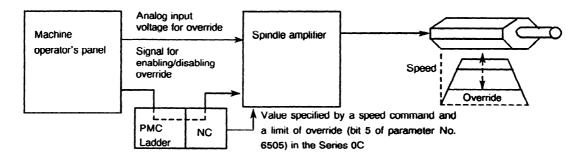
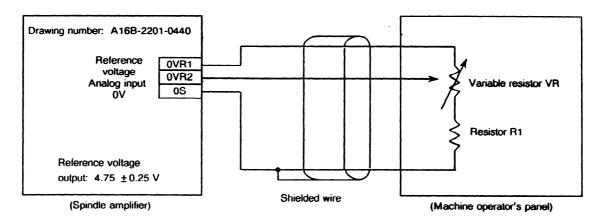
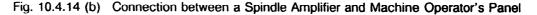


Fig. 10.4.14 (a) System Configuration

(5) The following figure shows the connection of units when analog voltage is input.


The limit for voltage input into the OVR2 terminal is 4.5 V.


Override can be set in increments of 1%.

Total resistance of resistors VR and R1 must be 1 $k\Omega\,$ to 10 $k\Omega$.

The following values are examples for the conventional analog spindle:

 $VR = 1.0 \text{ k}\Omega$, $R1 = 1.0 \text{ k}\Omega$ or 2.4 k Ω

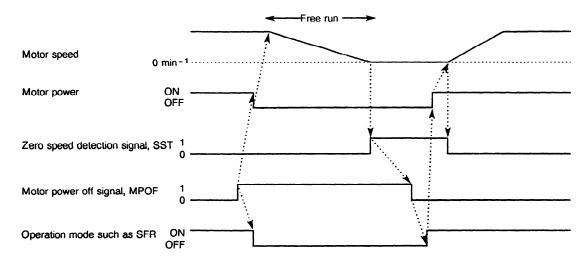
(6) When the signal for enabling/disabling this override function is set, or the parameter for an override limit is changed, the speed of the motor may change substantially. Stop the motor first, and then set the signal or change the parameter.

10.4.15 Motor power off signal (MPOF)

(1) This signal is used to cut the power of the motor when a failure occurs while the spindle is synchronously controlled or the gear cutting machine is operating. When the power is cut, the motor runs free.

This function is applied to the following unit: A06B-6064-H3xx#H550 (Version 9A50.I or later)

- (2) This signal only cuts the power of the motor. After the power is cut, turning off the emergency stop or machine ready signal turns off the magnetic contactor in the spindle amplifier.
- (3) The power can be restored to the motor again after the motor stops (zero speed signal, SST = 1).

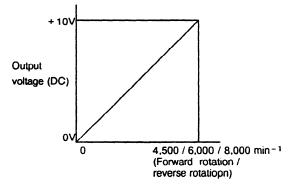

If the signal is canceled, the power cannot be restored to the motor while the motor is operating (SST = 0).

(4) After the power of the motor is cut, all the operation modes(*1) must be canceled for safety.After the motor stops (SST = 1), set the operation modes again.

When the power is cut during position control, an alarm such as excessive deviation may occur because position control remains effective.

- (+1) Example of operation modes:
 - Forward rotation command
 - Reverse rotation command
 - Spindle orientation (ORCM)
 - Rigid tapping (RGPT, RGTAP)
 - Spindle synchronization control (SPSYC, SPPHS)
 - Cs-axis control
 - Cs contour control (COFF, CON, SCNTR1, SCNTR2, etc.)
 - Differential mode (DEFMD)

(5) Example of the sequence



(6) Setting bit 2 of parameter 6509 to 1 cuts off the power of the motor as soon as the AL-24 spindle alarm (serially transmitted data error) occurs. The motor usually decelerates and stops when the alarm occurs.

10.5 Speed Indication Voltage Signal (SM, OM)

(1) The rotation speed of the AC spindle motor can be indicated by externally connecting a speedmeter.

A voltage (DC) proportional to the rotation speed is outputted, irrespective of the forward or reverse rotation of the motor. A + 10V is outputted at the maximum revolution 4,500/6,000 min - 1.

Motor rotation speed

(2) Use the following speedmeter

(DC voltmeter)

- One-sided deflection DC voltmeter
- DC voltage 10V full scale
- Internal resistance higher than 10 kilo ohms

Example) DC voltmeter LM-80: Kuwano Electrical Manufacturing Co., Ltd.

(3) With respect to the speed indication voltage, the forward rotation/reverse rotation output voltage is calibrated by a parameter. The voltage accuracy is max. ± 3%..

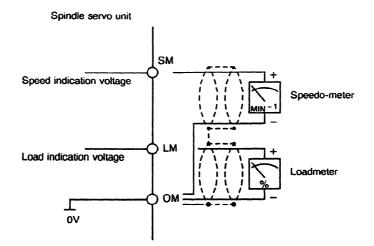


Fig. 10.5 Connecting the Spindle Servo Unit to a Speedmeter and a Load Meter

(4) Terminal board TB can be used as the display interface for this signal. Use a 2-core shielded cable.

10.6 Load Indication Voltage (LM, OM)

- (1) The load indicator indicates the load factor, which is the ratio of the load to the maximum output obtainable by the spindle motor at the input voltage and working revolutions when the machine tool spindle is rotating without load or when cutting is in progress.
- (2) When the rated input voltage is applied, the revolutions-to-spindle motor output relation, revolutions-to-torque relation and revolutions-to-indicating voltage relation are as shown in Figs. 10.6 (a), 10.6 (b), and 10.6 (c).

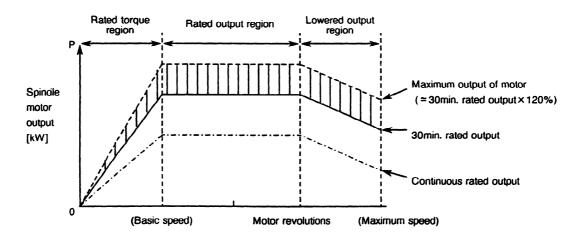


Fig. 10.6 (a) Spindle Motor Output

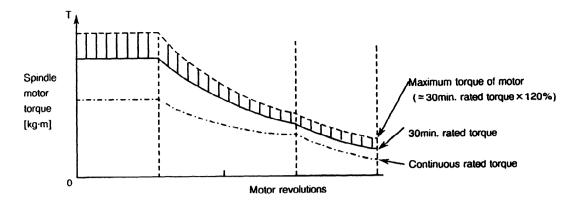


Fig. 10.6 (b) Spindle Motor Torque

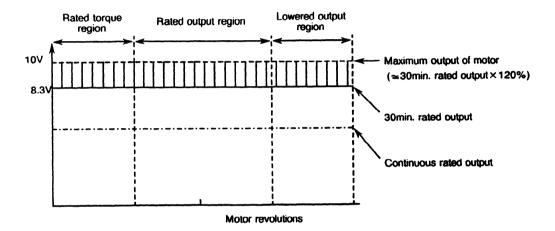


Fig. 10.6 (c) Voltage Used for Operating a Load Meter

- (3) The relation between each spindle motor output and the indicating voltage of the load indicator is as shown in Table 10.5 (a), assuming that the continuous rated output of the spindle motor is 100%.
- (4) Four types of indications of the load indicator may be considered approximately from Table 10.5 (a). For the indication of the load indicator in this case, refer to examples shown in Table 10.5 (b).
- (5) Machine tool builders are requested to prepare a load indicator (DC voltmeter) which complies with the following specification.
 - One-side deflecting DC voltmeter
 - DC voltage 10V, full scale
 - Internal resistance 10 kilo ohms

Example) DC voltmeter LM-80 made by KUWANO DENKI

(6) Terminal board TB can be used as the display interface for this signal. Use a 2-core shielded cable.

7-110

Model		Indicating voltage of	Ratio asuming that	Example of load indicatror		
	Output (kw)	load indicator (V) (Note)	continuous rated is 100% (%)	Type of applicable load indicator	Ratio to full scale (%)	
0.5S	0.65	4.9	100		100	
	1.1	8.3	169	с	166	
	1.32	10.0	203		200	
	1.5	5.7	100		102.2	
1S	2.2	8.3	147	A .	150	
Γ	2.64	10.0	176		180	
	1.1	2.5	100		100	
1.5S	3.7	8.4	338	D	338	
Γ	4.4	10.0	400		400	
	2.2	5.0	100		101	
25	3.7	8.3	166	С	166	
	4.4	10.0	200		200	
	3.7	5.6	100		100.8	
35	5.5	8.3	148	A	150	
Ē	6.6	10.0	178		180	
	3.7	6.1	100		109.8	
6S	5.5	8.3	136	A	150	
Ē	6.6	10.0	164		180	
	7.5	5.7	100		102.6	
8S	11.0	8.3	146	A	150	
Γ	13.2	10.0	175		180	
	11	6.1	100		109.8	
12S	15	8.3	136	A	150	
Γ	18	10.0	164		180	
	15	6.7	100		100.5	
15S	18.5	8.3	124	В	125	
	22.2	10.0	149		150	
	18.5	7.0	100		105	
18S	22.0	8.3	118	В	125	
	26.4	10.0	142		150	
	22.0	7.0	100		105	
225	26.0	8.3	118	В	125	
	26.0	10.0	142	-	150	

Table 10.6 (a) Relation between each spindle motor output and indicating voltage of load indicator

Model	Output (kw)	Indicating voltage of load indicator (V) (Note)	Ratio asuming that	Example of load indicatror			
			continuous rated is 100% (%)	Type of applicable load indicator	Ratio to full scale (%)		
30S	30.0	6.7	100		105.5		
	37.0	8.3	124	в	125		
	44.4	10.0	149		150		
	37.0	6.8	100		103		
40S	45.0	8.3	122	В	125		
	54.0	10.0	146		150		

(Note) Accuracy of the load indicator voltage depends upon the speed used or the input voltage. The maximum deviation is approximately $\pm 15\%$.

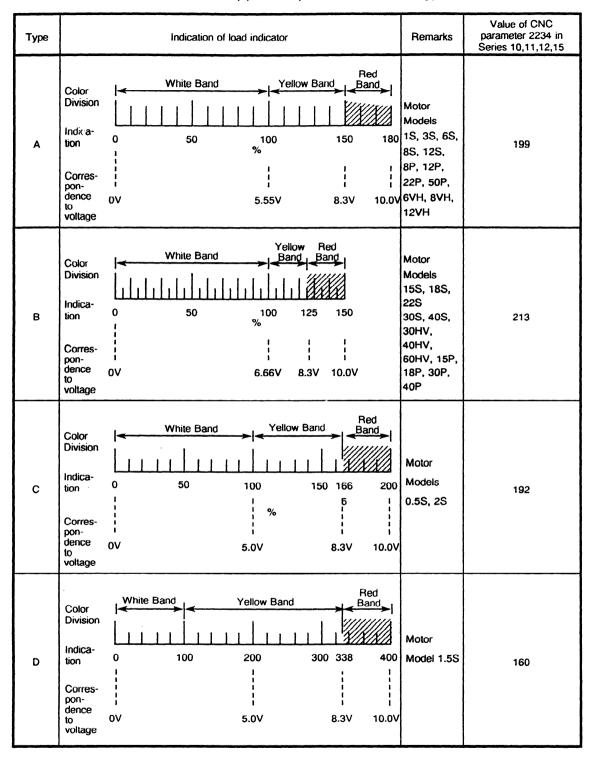


Table 10.6 (b) Examples of load indicator type

(Note 1) Data Calculation Formula

Parameter setting data = Load meter output voltage during continuous rated output x 128 + 128

10V

7 - 113

(7) FANUC Series 0-TC/0-MC

Reading load meter and speed meter of spindle through PMC window.

(a) Settings

G202 - In case of load meter: 19h In case of speed meter:1Ah G203 - 01h G204 - 00h G205 - 00h

Settings are designated as those given above. These settings invert the transmission request bit (G200.0).

Data from the load meter and speed meter are received from F252 in binary word form. Note that if the load meter has been set in G202, setting 02h in G203 makes it possible to read the load meter data in F252 and the speed meter data in F254.

(b) Load Meter Data Units

The output of the load meter is regulated so that the maximum attainable value is +32767. The percentage data of the maximum output when continuous rated output is 100% is set in parameter no. 6627.

- Ex: If the continuous rated output of the motor of a certain model is taken as 100% and its maximum output then becomes 180%, the parameter data becomes "180".
 Conversion to percentage data is made according to the following formula:
 % data =
 (Load meter data) / 32767 × (parameter data)
- Ex: When load meter data = 10000 parameter data = 180, % data = 10000/32767x180 = approx, 55%
- (c) Calculating Motor Speed

The speed of the motor is regulated to that the maximum attainable speed is +16383 min⁻¹. The maximum speed data (in min⁻¹) is set in parameter no. 6520.

Conversion to min⁻¹ data is made according to the following formula: min⁻¹ data = (speed data) / 16383 × (parameter data)

Ex: When speed data = 5000 and parameter data = 6000, $min^{-1} data = 5000/16383 \times 6000$ = approximately 1833 min^{-1}

(Note) Speed data represents the speed of the motor. In order to find the spindle speed, it is necessary to multiply this value by the gear ratio.

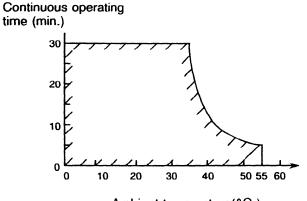
VIII. AC SPINDLE SERVO UNIT HV series

1. GENERAL

This part describes the AC Spindle Servo Unit HV series (30HV/40HV/60HV). For the topics other than those described below, see Part V.

The AC spindle servo unit HV series does not require a power transformer to be connected to a 380/415 VAC input power supply. The AC spindle servo unit HV series can be directly connected to a 380/415 VAC power supply.

2. FEATURES

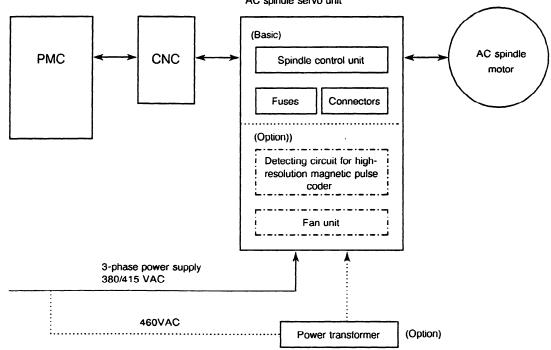

- (1) With the state-of-the-art power electronics technology, a 380/415 VAC power supply can be connected not via a power transformer but directly to the AC spindle servo unit for driving.
- (2) Since the spindle servo unit is designed so that its main circuits are cooled by outside air, the electronic circuits in the power magnetics cabinet can be sealed completely in severe environments, thereby improving reliability.

3. SPECIFICATIONS

Item	Model	30HV	60HV					
30-min rated power source capacity	kVA	54 63 100						
Power source(*1)		380/415VA	AC+10%, -15% 50/6	60Hz±1Hz				
Main circuit system			Transistor PWM inverter					
Feedback system		Speed feedback by pulse generator						
Braking system (regenerative energy processing system)		Regenerative braking (power regeneration)						
Speed control range (speed ratio)	rpm		45 to 4500 (1:100)					
Speed variation		Less than 0.1% of the maximum speed (load variation: 10 % to 100%)						
Ambient temperature(*2)	°C	0 to 55						
Weight		76 76 110						

(*1) When a power supply voltage not specified here is used, a transformer is required.

(*2) With model 60HV, the continuous operating time of the motor at the 30-min rated output in a high ambient temperature depends on the thermal limitation of the unit as shown below. (For detailed information about the method of cooling the unit, see Chapter 6.)


Ambient temparature(°C)

4. CONFIGURATION AND ORDER SPECIFICATIONS

4.1 Configuration

The FANUC AC Spindle Servo Unit HV series (Model 30HV/40HV/60HV) consists of the following units and components:

- (1) Spindle control unit (basic)
- (2) Fuses for spare (basic)
- (3) Connectors for connection (basic)
- (4) Detecting circuit for high-resolution magnetic pulse coder (optional)
- (5) Power transformer (for 30HV/40HV) (optional)
- (6) Fan unit (optional)

AC spindle servo unit

4. CONFIGURATION AND ORDER SPECIFICATIONS

4.2 Order Specifications

For options other than those listed below, see Part V.

Classifi- cation	Name		Specification number	Remarks	
Basic	Spindle control	unit model 30HV	A06B-6065-H030#H550		
	Spindle control	unit model 40HV	A06B-6065-H040#H550		
	Spindle control	unit model 60HV	A06B-6065-H060#H550		
Basic	Optical fiber cable		A02B-0094-K801	5 m long	
(option)	Connectors	Without Cs axis	A06B-6062-K103	Solder type	
		control function	A068-6062-K104	Crimp type	
	Fuses		A068-6065-K040	Model 30HV/40HV	
		A06B-6065-K060		Model 60HV	
Option	Power transformer		A06B-6054-J003		
	Fan unit		A06B-6044-K040	Model 30HV/40HV	
		A06B-6065-K301		Model 60HV	

5. INSTALLATION

Install the AC spindle servo unit in a location that meets the environment conditions described below.

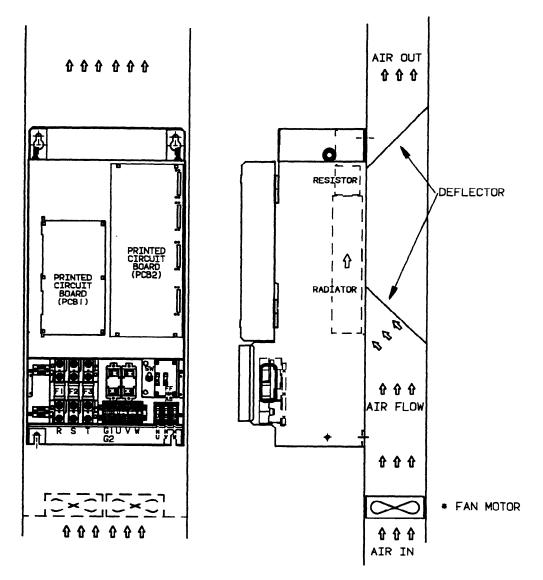
5.1 Ambient Temperature

Ambient temperature of the unit:	0°C to 55°C
Ambient temperature of the storage cabinet	
(at air inlet):	0°C to 40°C

5.2 Humidity

Normally 95% RH or below (no condensation)

5.3 Vibration

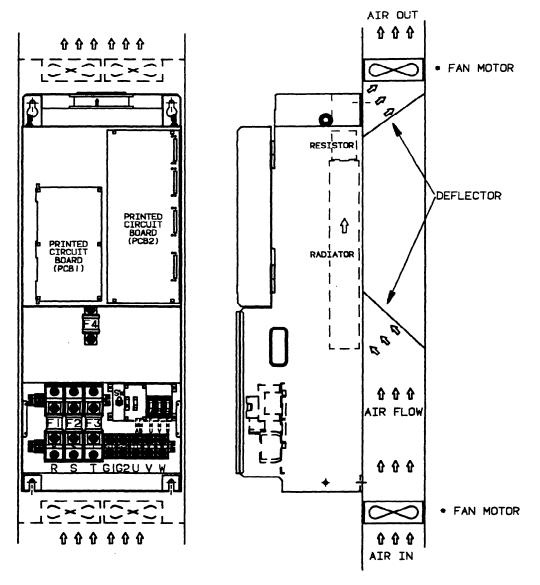

In operation: 0.5G or less

5.4 Atmosphere

No corrosive or conductive mist or drops must deposit directly on the electronic circuits.

6. COOLING

- No fan motor for cooling is provided as basic. A fan motor for forced-air cooling is to be prepared by the machine tool builder.
- For model 30HV/40HV, maintain an air flow of 4.5³/min or more at the air inlet. When no fan unit is provided, see Fig. 6.2.
- For model 60HV, see Fig. 6.2.
- An optional fan unit can be directly installed at the air inlet shown in Chapter 7. When installing a fan motor, provide a clearance of 50 mm or more at the back of the fan motor.



* Specifications of Fan Motor

Voltage	(V)	20	00
Frequency	(Hz)	50	60
Input	(W)	43	40
Speed	(min - 1)	2750	3200
Maximum air flow	(m ³ /min)	6.5	7.5
Maximum static pressu	<i>u</i> re (mm-H ₂ 0)	15	16

Example) Part number: T755DX (manufactured by Toyo Denki)

Fig. 6.1 Cooling AC Spindle Servo Unit Model 30HV/40HV (without Fan Unit)

* Specifications of Fan Motor

Voltage	(V)	20	00
Frequency	(Hz)	50	60
Input	(W)	43	40
Speed	(min - 1)	2750	3200
Maximum air flow	(m ³ /min)	6.5	7.5
Maximum static pressure	e (mm-H ₂ 0)	15	16

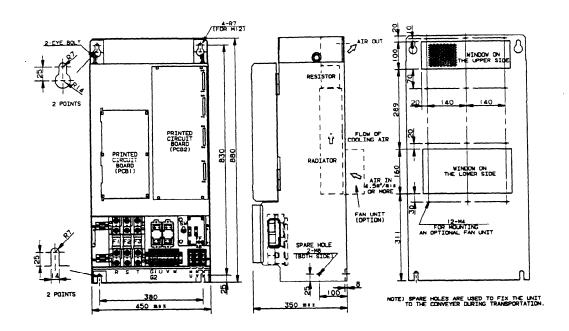
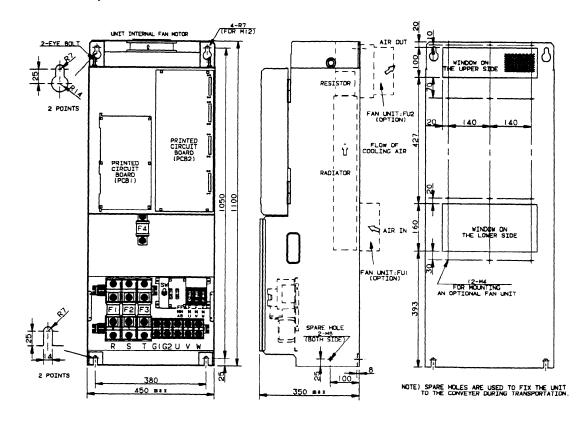
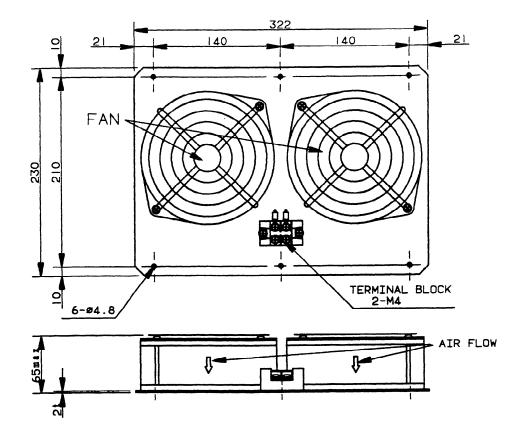

Example) Type number: T755DX (manufactured by Toyo Denki)

Fig. 6.2 Cooling AC Spindle Servo Unit Model 60HV (without Fan Unit)


7. EXTERNAL DIMENSIONS AND SERVICE CLEARANCE

7.1 External Dimensions

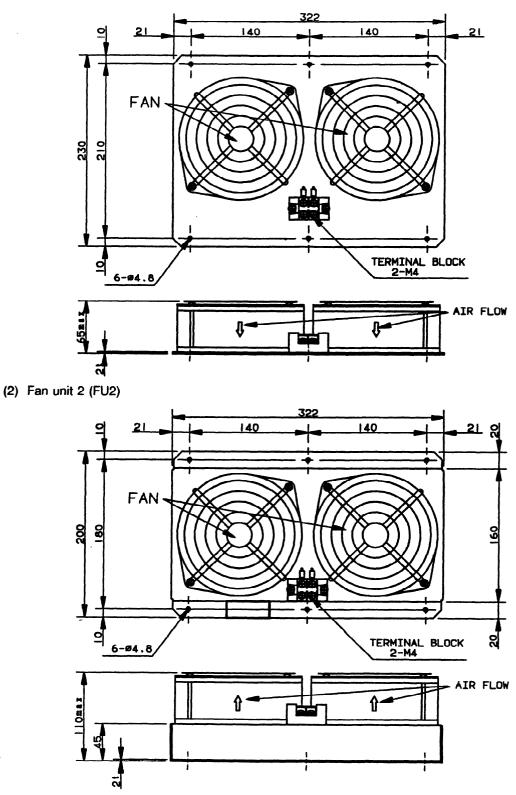
7.1.1 AC spindle servo unit model 30HV/40HV



7.1.2 AC spindle servo unit model 60HV

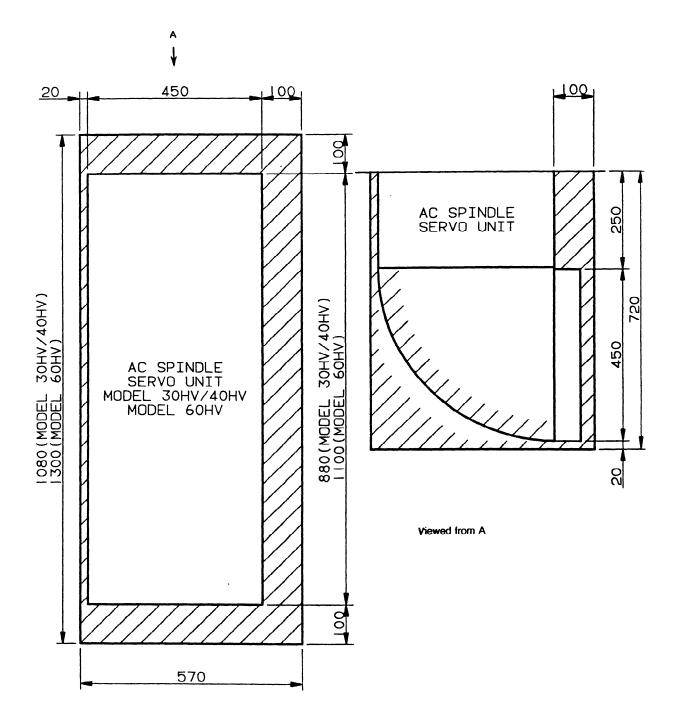
8 – 9

7.2 Fan Unit



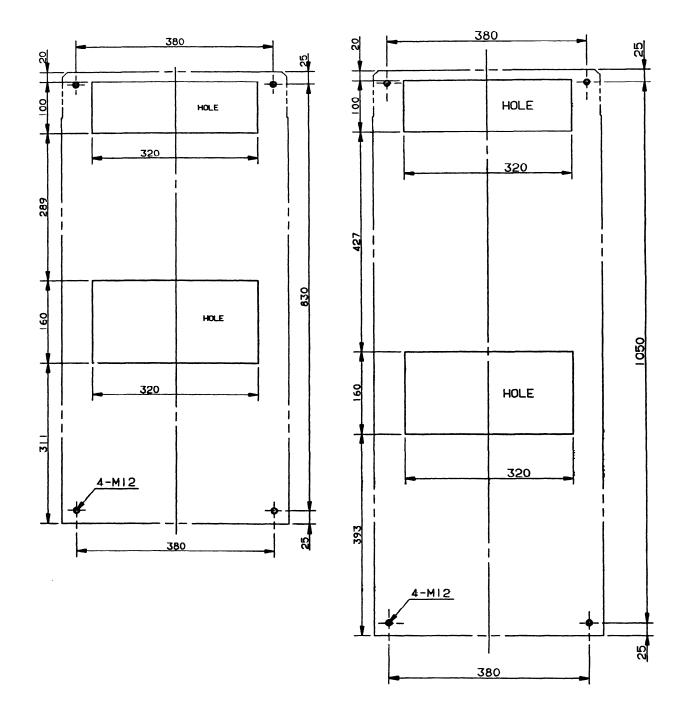
7.2.1 For model 30HV/40HV (specification number: A06B-6044-K040)

(Note) M4 screws for mounting the fan unit are to be prepared by the user.



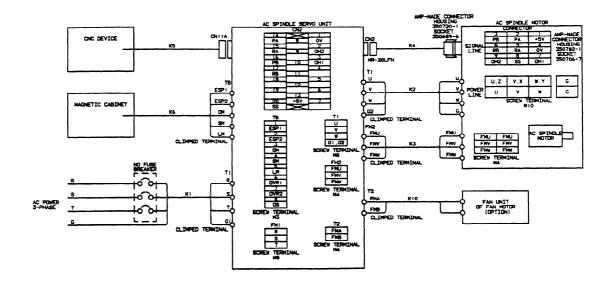
(1) Fan unit 1 (FU1)

(Note) M4 screws for mounting the fan unit are to be prepared by the user.

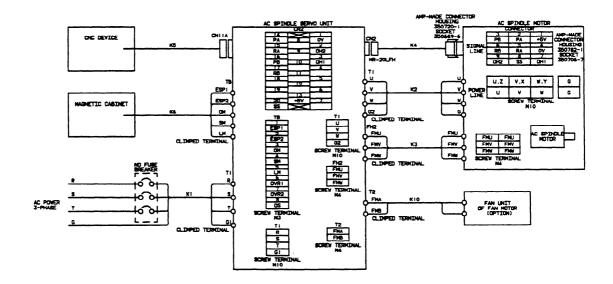


7. EXTERNAL DIMENSIONS AND SERVICE CLEARANCE

7.4 Panel Holes

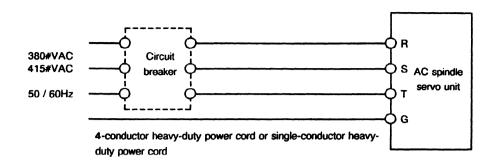

(1) Model 30HV/40HV

(2) Model 60HV

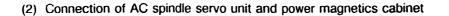


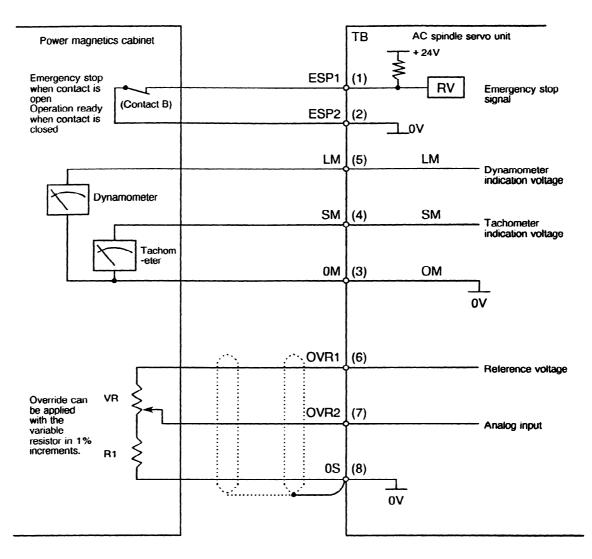
8. CONNECTION

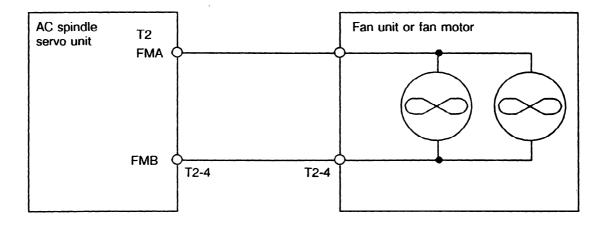
- 8.1 Connection Diagram (without High-Resolution Magnetic Sensor Pulse Coder)
- 8.1.1 AC spindle servo unit model 30HV/40HV



8.1.2 AC spindle servo unit model 60HV


8.2 Detailed Connection Diagram


(1) Connection of power source


Model	Applicable power cable	Amplifier terminal screw
30HV	R,S,T : Single-conductor, 30 mm ² or more (heat-resistant) G : Single-conductor, 22 m ² (heat-resistant)	
40HV	R,S,T : Single-conductor, 38 mm ² or more (heat-resistant) G : Single-conductor, 22 m ² (heat-resistant)	M8
60HV	R,S,T : Single-conductor, 50 mm ² or more (heat-resistant) G : Single-conductor, 22 m ² (heat-resistant)	M10


(Note) See sections about connection of each motor series for motor terminal screw.

(3) Connection of AC spindle servo unit and fan unit

(4) Connection diagram of AC spindle servo unit and AC spindle motor

8.3 Cables

See APPENDIX 1 for cables.

9. CAUTION IN USE

9.1 Unit Structure

The radiator and resistor are separated as a radiator section to prevent the ambient temperature of the cabinet and main unit from rising due to heat produced by loads. As shown by the outline drawing, an air inlet and outlet are provided at the back of the unit.

When installing the unit, orient the unit to provide an angle in the longitudinal direction, and tighten the bolts at the angle, taking the ventilation route into consideration.

9.2 Installing the Unit

The unit is heavy. So, note the following when installing the unit.

- ① The unit is designed to that it is hung using the upper eyebolts. So make an arrangement so that the unit can be installed while it is hung.
- If it is difficult to install the unit by hanging it, temporarily fix a base plate by using the auxiliary tapped holes (M8) provided at the bottom on the sides of the unit. Then install the unit by lifting it, for example, with a forklift.
- ③ In either case, it is recommended to provide positioning guides at the bottom of the unit.

9.3 Sealing

When the front and back of the unit need to be completely sealed, attach the following sealing tape onto the perimeter of the sides:

Nitto Eptsealer (Nitto Denko Corporation)

Width: 10 mm Thickness: 5 mm Length: 4 m

IX. POSITION CODER METHOD SPINDLE ORIENTATION

1. GENERAL

Unlike conventional mechanical spindle orientation using stoppers, etc., the spindle orientation stops the spindle at a fixed position by directly feeding back position signals from the position coder directly connected to the machine spindle.

2. FEATURES

(1) Mechanical parts are not required.

This orientation is accomplished simply by connecting the position coder to the spindle without any need of a mechanical orientation mechanism (stoppers, pin, etc.) for spindle orientation.

(2) Reduction of orientation time

Since the spindle motor connected to the spindle is utilized and the orientation can be done directly from high-speed rotation, irrespective of gear shift, the orientation time is largely reduced.

(3) Simplified power magnetic sequence control

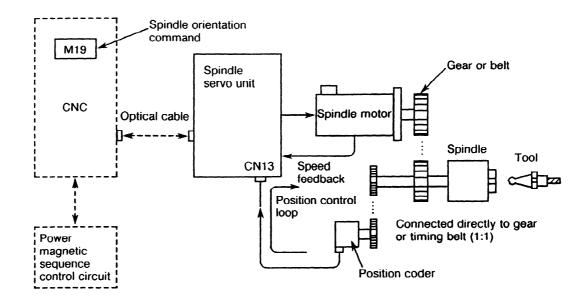
This sequence consists of the spindle orientation command, its completion signal, spindle high/low speed signal and spindle medium speed signal only without any need of other signals. Neither orientation speed command sequence nor torque limit command sequence is needed.

(4) High reliability

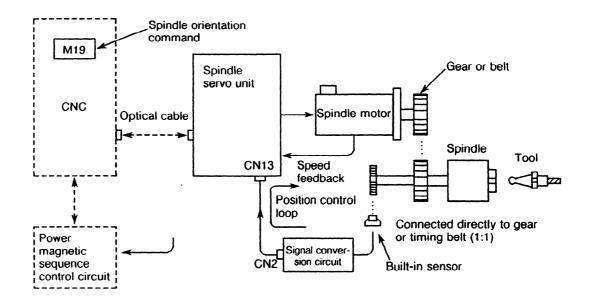
Electrical system assures improved reliability without any damage to the mechanical section against an external impact.

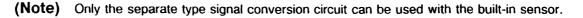
(5) High accuracy and rigidity

The spindle orientation accuracy and rigidity are enough to execute automatic tools exchange (ATC).


(6) Positioning of workpiece

Workpieces can be positioned to arrange their loading and unloading directions in lathe.


(7) Reduction of the number of processes in boring Since the spindle orientation can be done in the same direction as the rotating direction of the spindle when boring ends, workpieces will not be damaged by tool blades. Since these tool blades can be mounted or dismounted in a fixed direction with reference to workpieces, programming is easy.


3. CONFIGURATION AND ORDER DRAWING NUMBER

3.1 Orientation Using Position Coder

3.2 Orientation Using Built-in Sensor

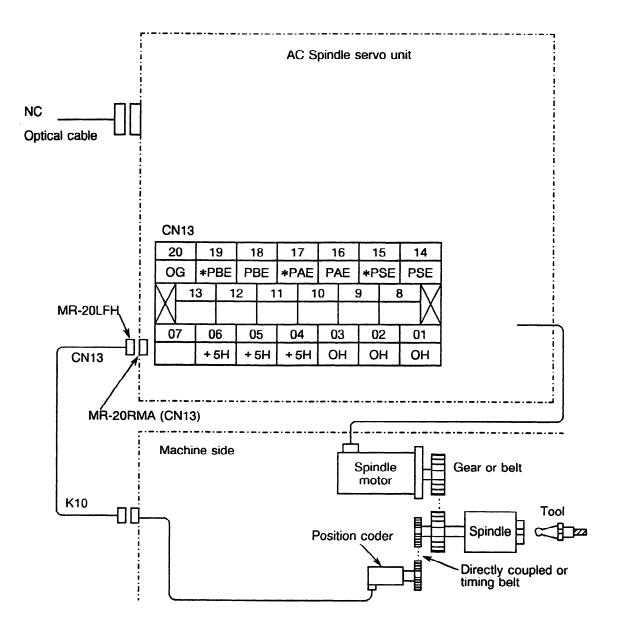
3.3 Order Drawing Number

3.3.1 Position coder

Classifi-cation	Name	Specification Number	Remarks
	Position Coder C	A86L-0027-0001/101	Balanced transmission type 160 with flange 4000 min - 1 specification
	Position Coder D	A86L-0027-0001/001	Balanced transmission type 160 with flange 6000 min - 1 specification
	Position Coder G	A86L-0027-0001/201	Balanced transmission type 160 with flange 8000 min ⁻¹ specification
	Position Coder J	A86L-0027-0001/102	Balanced transmission type <a>B 68 with flange 4000 min ⁻¹ specification
Option	Position Coder K	A86L-0027-0001/002	Balanced transmission type □68 with flange 6000 min ⁻¹ specification
	Position Coder L	A86L-0027-0001/202	Balanced transmission type □68 with flange 8000 min ⁻¹ specification
	Position Coder E	A86L-0027-0001/103	Balanced transmission type with no flange 4000 min - 1 specification
	Position Coder F	A86L-0027-0001/003	Balanced transmission type with no flange 6000 min ⁻¹ specification
	Position Coder H	A86L-0027-0001/203	Balanced transmission type with no flange 8000 min - 1 specification

3.3.2 Spindle orientation function software (optional CNC software)

Series 15M/T	:	A02B-0094-J730
Series 0MC	:	A02B-0099-J982
Series 0TC, TT	:	A02B-0098-J982
Series 16M	:	A02B-0121-J853
Series 16T, TT	:	A02B-0120-J853
Power Mate-MODEL A	:	A02B-0118-J803
Power Mate-MODEL B	:	A02B-0122-J803


4. SPECIFICATIONS

		Expla	nation				
No.	Item	Stop position internal setting	Stop position external command				
1	Position coder	Coupled to the spindle one to one ratio 1024 pulses/rotation (A-phase and B-p 1 pulse/rotation (One pulse/rev. signal) Parallel transmission type for 4,000 mir	phase signals)				
2	Detection units	One spindle rotation (360°) is divided by 1024 x 4 (4096) pulses, i.e. 0.088° is made one pulse unit (detection unit). 360°/4096 pulses = 0.088° /pulse (*1)					
3	Stop position setting	The distance between the point indicated by the position coder one pulse/rev. signal and the actual stopping position is set for the number of pulse (N) using parameters.					
4	Precision repeated positionings	± 0.2° (spindle angle) (*1) Machine error factors (for example, the backlash of the coupling betweer the spindle and position coder) are excluded. Depending on the fineness of the position gain adjustment, the spindle may move for one					
5	Stop positionsetting		Position to be stopped can be specified by parameter. Stops at the position of the number of pulses of pulses specified from the position of the 1 rotation signal of the position coder.				
6	Operation	· · · · · · · · · · · · · · · · · · ·	When orientation command is given, spindle rotates $\frac{1}{2}$ to $2\frac{1}{2}$ turns after spindle speed spindle orientation speed, and stops at the specified stop position.				

(*1) For the built-in sensor, refer to XII-10.

5. CONNECTION

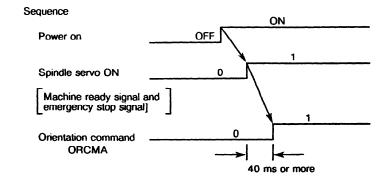
Interface (for position coder)

6. SIGNAL EXPLANATION

6.1 Spindle Control Signals

6.1.1 DI signals (PMC to CNC)

	РМ	0C	15	16	7	6	5	4	3	2	1	0
	G126	G110			SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
Second : First :	: : G127	G112 G111	G239 G230	G080' G079					SHA11	SHA10	SHA09	SHA08
Second :			G238		L					07110.4		
First : Second :	: G112 :	G229 G233	G227 G235		MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	ILMLA
		G230			RCHA	RSLA	INTGA	SOCNA	MCFNA	SPSLA	•ESPA	ARSTA
Second : First :	: G114	G234 G231	G234 G229		RCHHGA	MENHG	INCMDA	OVRA	DEFMDA	NRROA	ROTAA	INDXA
Second :	:	G235	G237	G076								


6.1.2 DO signals (CNC to PMC)

PM	0C	15	16	7	6	5	4	3	2	1	0
First : F228				ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
Second :	F285	F245	F049								
First : F229				MOAR2A	MOAR1A	POAR2A	SLVSA	RCFNA	RCHPA	CFINA	СНРА
Second :	F286	F244	F050				ليتعين والمرجع				
First : F230	F283	F231	F047							INCSTA	PC1DTA
Second :	F287	F247	F051	L							

6.2 Details of Signals

6.2.1 Orientation (fixed position stop) command (ORCMA)

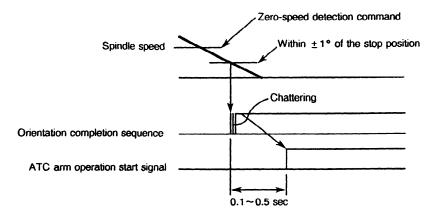
- (1) This command signal is used to stop spindle movement at the preset position to allow tool change and workpiece loading/unloading.
- (2) When this signal is specified as "1" while the spindle is rotating, the rotation decelerates immediately and the spindle stops at the preset position.
- (3) When the orientation command is issued, set the spindle forward/reverse rotation command (SFRA, SRVA) to "0" for safety. By means of this, the spindle will not start to rotate even in the unlikely event ORCMA becomes "0" during tool change.
- (4) Set this signal to "0" by the tool change completion signal or workpiece loading/unloading completion signal.
- (5) Always set the orientation command signal to "0" when turning on power.

(6) When an emergency stop occurs during orientation, the orientation command signal must be reset ("0").

Return the ATC arm to the safe position so that it will not be dameged if the spindle or tool rotates when the power is turned on.

6.2.2 Orientation (fixed position stop) completion signal (ORARA)

(1) When the orientation command is inputted and the spindle has stopped near the preset fixed position (for example, within +1), it becomes "1".


(Condition for ORARA to become "1" = $\frac{(ORCMA \text{ is "1"}) \times (\text{zero-speed signal})}{\text{Near to fixed position}}$

Near to fixed position is set to the parameter in case of Series 16 (PRM4075=Orientation complete signal detection level).

If the above 3 conditions are satisfied, the orientation complete signal is outputted.

If the orientation completion signal is not issued within a set period of time after the orientation command signal is input, it is considered to be abnormal. So it should be detected by the power magnetic sequence and an orientation alarm should be issued.

- (2) Tool change or workpiece loading/ unloading operations can be started when this signal is "1".
- (3) The spindle orientation completion signal is issued when the spindle is within +% of the preset position and so it does not always indicate that the spindle has stopped completely. Some machines allow a very short operation time for the ATC arm to grip the tool. In this case, start the ATC arm operation after a short time (0.1 to 0.5 sec.) so that the arm will grip the tool when the spindle has stopped completely.

(4) This signal will become "0" during a tool change if the spindle is pushed away from the preset position by external force.

In this case, design a power magnetic sequence so that the tool change operation is interrupted.

However, do not release the orientation command, and if the orientation completion signal is issued again, perform a tool change.

(5) If the automatic tool change (ATC) structure is such that it may cause serious damage if a malfunction occurs, install a proximity switch to generate a verification signal when the ATC enters an area in which the automatic tool change operation can be performed. In addition to this, perform a double safety check by the power magnetic sequence and carry out a tool change.

6.2.3 Gear/clutch signal (CTH1A, CTH2A)

- (1) These signal are used in order to shorten the orientation time when there are 2 speed change stages of high/low between the spindle and spindle motor.
- (2) Set the following conditions corresponding to the clutch or gear state. They are used in order to select the spindle control parameter (position gain, gear ratio).

CTH1A CTH2A

1

- 0 0 : HIGH GEAR
- 0 1 : MEDIUM HIGH GEAR
 - 0 : MEDIUM LOW GEAR
- 1 1 : LOW GEAR

6.2.4 Command for changing the stop position in spindle orientation (INDXA)

(1) This command is used when the orientation position is changed again immediately after spindle orientation was just performed.

This command is valid when the spindle orientation command (ORCMA) is issued.

- (2) Changing this signal from 1 to 0 orients the spindle within one rotation to a new position (absolute position within one rotation) specified by new stop position data (SHA11 to SHA00).
- (3) The direction of spindle rotation is specified by the direction command for the shorter route (NRROA) or the command specifying the direction of rotation (ROTTA).
- (4) This function is valid when the CNC parameter corresponding to the spindle orientation function in which the stop position is specified externally is set.

6.2.5 Direction command for the shorter route when the stop position changes in spindle orientation (NRROA)

- (1) This command is used for specifying the direction of rotation, whichever is shortest, (within + 180 degrees) when the orientation position is changed again immediately after spindle orientation has just been performed.
- (2) When this signal is set to 1, positioning is performed in the direction that provides a shorter route, irrespective of the command specifying the direction of rotation when the stop position changes in spindle orientation.

6.2.6 Command specifying the direction of rotation when the stop position changes in spindle orientation (ROTAA)

- This command is used for specifying the direction of rotation when the orientation position is changed again immediately after the spindle orientation was just performed.
 When the signal is 0, the spindle rotates counterclockwise to the specified position and stops.
 When the signal is 1, the spindle rotates clockwise to the specified position and stops.
- (2) This command is valid when the direction command for the shorter route when the stop position changes in spindle orientation (NRROA) is 0.

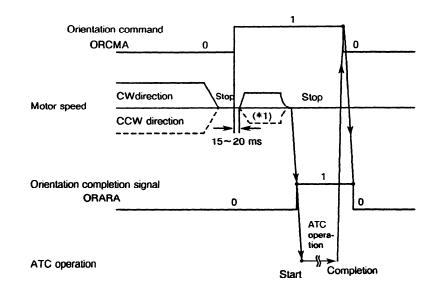
6.2.7 Spindle orientation command in which the stop position is specified externally (SHA11 to SHA00)

(1) This command is used for specifying a stop position with an absolute position within one rotation in the tollowing equation:

Stop position (degrees)

$$=\frac{360}{4096} \times \sum_{i=0}^{11} \times (2_i \times Pi)$$

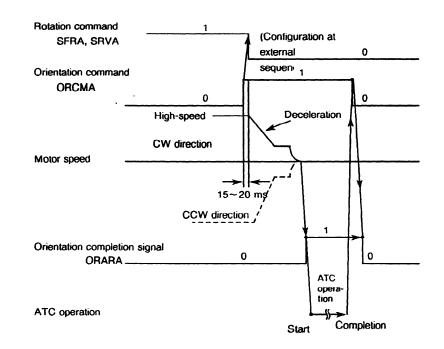
where

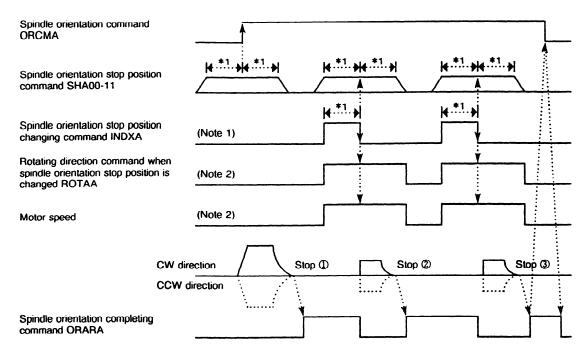

Pi = 0 when SHAi = 0Pi = 1 when SHAi = 1

(2) When this command is used, the stop position parameters in spindle orientation with a position coder (In case of Series 0: No. 6531 and 6671) are invalid.

(3) When parameter 6577 for the amount of shift is set, the stop position is shifted by the value set in the parameter.

6.3 Sequences


6.3.1 Orientation command while stopping


(*1) The spindle motor rotation direction can

be changed by setting. In standard setting, the spindle motor will stop at the fixed position in the direction the spindle motor was rotating before this orientation command signal was generated.

6.3.2 Orientation command during high-speed rotation

6.4 When Stop Position External Setting Type Spindle Orientation Function is Used

Set *1 to 50msec or more.

Stop ①

- Stopping in a specified position through a normal orientation command
- The rotating direction of the spindle motor is specified by setting a parameter.
- When the motor rotates first after the power has been turned on, it rotates at the orientation speed and stops in a specified position after the one rotation signal has been captured. When it rotates next or later, it stops in the specified position within one rotation.
- With the spindle orientation function in which a stop position is externally specified, if the data of SHA11-00 (spindle orientation stop position command) is decided in a second or later stop operation, the motor stops at a position ([one-rotation signal position] + [data specified by SHA11-00] + [PRM4077]) shifted by the value seized on a rising edge of ORCMA (spindle orientation command).

Stop 2 and 3

- Stopping in a specified position using the stop position external setting type spindle orientation function
- The rotating direction of the spindle motor is specified by the following command: (1) rotating direction command when spindle orientation stop position is changed (ROTA) or, (2) shortcut command when spindle orientation stop position is changed (NRROA).

(Note 1) INDXA, the spindle orientation stop position changing command, is effective only when NRROA, the shortcut command when spindle orientation stop position is changed, has been set to HIGH.

(Note 2) Specify when it is needed for the machine tool builders.

Other Cautions:

- 1. Then spindle orientation is executed during rotation, keep the spindle normal rotation/reverse rotation command (SFRA/SRVA) to "0" for safety while issuing the spindle orientation command ORCMA.
- 2. Set the spindle orientation command ORCMA to "0" using the tool change completing signal or the work attaching/detaching completing signal prepared by the machine manufacturer.
- 3. Make sure to set ORCMA, the spindle orientation command, to "0" before turning the power on.
- 4. Make sure to reset ORCMA, the spindle orientation command, (in other words, set it to "0") in case of emergency stop during spindle orientation.

6.5 Using the Spindle Orientation Function with the Incremental Command Set Externally (Spindle Speed Control)

6.5.1 General

The spindle orientation function with the incremental command set externally is added as a feature of spindle orientation by a position coder with the stop position set externally. The new function moves the spindle from the position specified by the spindle orientation command to the position specified by the incremental command. The spindle is positioned as follows.

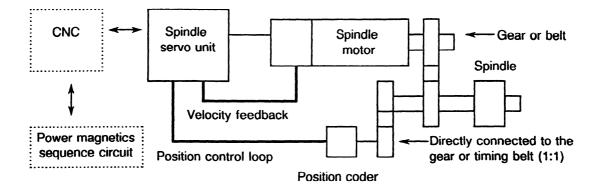
When the incremental command is sent from the PMC through the CNC, the spindle in the position specified by the spindle orientation command is turned accordingly and positioned. At the end of positioning, a completion signal is returned to the PMC through the CNC.

When this function is used, the following operations can be performed:

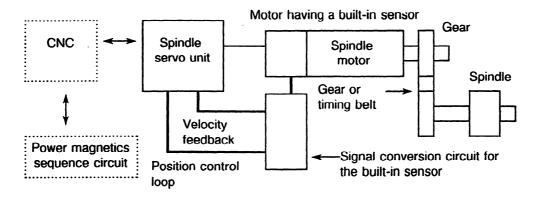
- (1) A turret can be positioned by the spindle motor.
- (2) When the command multiplication is set to 4096, the spindle speed can be controlled.

Applicable serial spindle amplifier (IGBT type)

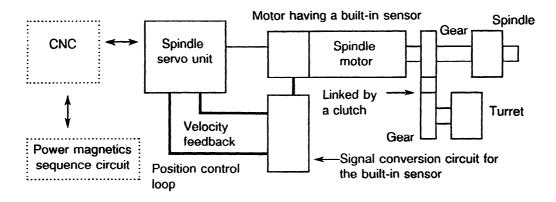
A06B-6064-<u>H3xx</u>#H550


Applicable control software series: 9A50, I and later editions

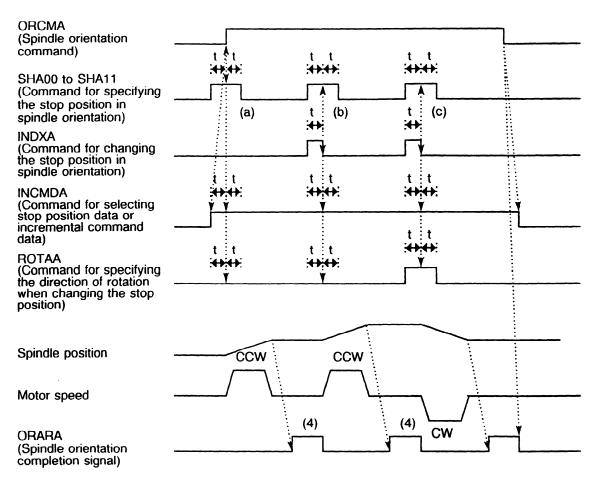
Applicable CNC


6.5.2 System configurations

The spindle orientation function with the incremental command set externally can be executed in the following system configurations:



- (2) Motor system built into the spindle
- (3) System in which the spindle and the motor having a built-in sensor are linked by a gear or timing belt



(4) System in which the turret and the motor having a built-in sensor are linked by gears and clutches (for turret positioning)

6.5.3 Control sequence

(1) Incremental action

- (a) If the rising edge of ORCM is detected when the spindle stops (zero speed detection signal SSTA is set to 1) and INCMDA is set to 1, the data of SHA00 to SHA11 is read as incremental command data. The spindle starts rotating as specified by the incremental command and stops. ROTAA determines the direction of rotation.
- (b) Another incremental action can then be executed. If the falling edge of INDXA is detected when both ORCM and INCMDA are set to 1, the data of SHA00 to SHA11 is read as incremental command data. The spindle starts rotating as specified by the incremental command and stops. ROTAA determines the direction of rotation.
- (c) The incremental command data is specified in units of pulses. The data range is 0 to +4096 pulses. ROTAA determines the direction of rotation. When a command multiplication parameter (Series 16: PRM4328) is specified, the spindle stops rotating after reaching the value obtained by the following expression: [Command multiplication parameter] × [Incremental command data]. During incremental motion, the parameter indicating the direction of rotation, NRROA (Series 16: PRM4003, bits 2 and 3), is invalid.
- (d) When the position deviation comes within the range specified by the parameter (Series 16: PRM4075), ORARA is output.

(Note) Set t to 50 ms or more. The signals require this time period to stabilize.

(2) When spindle orientation and incremental motion are both executed

ORCMA (Spindle orientation command) SHA00 to SHA11 (Command for specifying the stop position in spindle orientation) INDXA (Command for changing the stop position in spindle orientation)	$\begin{array}{c} \\ t \\ t \\ \hline t \\ t \\$
INCMDA (Command for selecting stop position data or incremental command data) ROTAA (Command for specifying the direction of rotation when changing the stop position)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NRROA (Command for taking a shorter route when changing the stop position)	
Spindle position	ccw
Motor speed	
ORARA (Spindle orientation completion signal)	

(a) Stopping the spindle in place using the usual orientation command

- In the first orientation after the power is turned on, the spindle rotates at the orientation speed. After a single rotation signal is detected, the spindle stops in place. In the second and subsequent orientations, the spindle stops in place before it turns once.
- The parameter specifying the direction of rotation (Series 16: PRM4003, bits 2 and 3) applies to the spindle motor.
- If the rising edge of ORCMA is detected when INCMDA is set to 0, the data of SHA00 to SHA11 is read as stop position data. The spindle stops after shifting by the distance obtained by the following expression: [Value of SHA00 to SHA11] + [Parameter of shift distance of the stop position in orientation (Series 16: PRM4077)]
- (b) Stopping the spindle in place by an incremental command
 - For incremental motion, see (1) above.
 - When the command multiplication parameter (Series 16: PRM4328) is set to 4096, the spindle speed can be controlled.

- (c) Stopping the spindle in place by setting the stop position externally
 - If the falling edge of INDXA is detected when ORCMA is set to 1 and INCMDA is set to 0, the data of SHA00 to SHA11 is read as stop position command data. The spindle rotates and stops at the specified position.
 - NRROA and ROTAA determine the direction of rotation. When NRROA is set to 1, the spindle rotates from the current stop position to the specified stop position by taking the shorter route (within ±180°). When NRROA is set to 0, ROTAA determines the direction of rotation.

6.5.4 PMC signals (DI/DO signals)

This section describes PCM signals (DI/DO signals) used for executing the spindle orientation function with the incremental command set externally.

(1) PMC \rightarrow CNC (DO signals)

	(PC address)			b7	b6	b5	b4	b3	b2	b1	b0
No.1 No.2	0C G110 G112	15 G231 G239	16 G078 G080	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHA00
No.1 No.2	G111 G113	G230 G238	G079 G081					SHA11	SHA10	SHA09	SHA08

SHA00 to SHA11 (Stop position data or incremental command data)

This 12-bit signal specifies stop position data or incremental command data. INCMDA determines whether the data specified by the signal is used as stop position data or incremental command data.

The data can be specified in the range of 0 to +4095 pulses.

· ·	ldress)	b7	b6	b5	b4	b3	b2	b1	ь0
0C 1 No.1 G229 G2 No.2 G233 G2	27 G070		ORCMA			CTH1A	CTH2A		

ORCMA (Spindle orientation command signal)

The spindle orientation function with the incremental command set externally is validated during spindle orientation.

- 1: The spindle oriented.
- CTH1A, CTH2A (Signal for selecting a gear or clutch)

The signals select the proper spindle control parameters (position gain, gear ratio, etc.) for the selected gear or clutch.

The parameters selected by this signal are described in Section 6.6.5, "Parameters." These parameters select the following gear or clutch statuses. Select the appropriate parameter from those listed in the table below.

		CTH1	A	CTH2A	CTH2A Gear or clutch status						
		0 0 1 1		0 1 0 1	High Gear Medium High Gear Medium Low Gear Low Gear			() (L	łigh) ligh) ₋ow) ₋ow)		
	•	addre		b7	b6	b5	b4	b3	b2	b1	b0
No.1 No.2		15 G229 G237	16 G072 G076			INCMDA			NRROA	ROTAA	INDXA

- INCMDA (Signal for selecting the stop position data or incremental command data) • This signal determines whether to use the data of SHA00 to SHA11 set externally as stop position data or incremental command data.
 - 0: The data is used as stop position data.
 - 1: The data is used as incremental command data.
- NRROA (Signal for taking a shorter route)

When the stop position is changed and stop position data is selected (INCMDA is set to 0), the spindle rotates to the target stop position by taking the shorter route. When INCMDA is set to 1, the NRROA signal is invalidated.

- 0: The spindle rotates as specified in ROTAA (Series 16: PRM4003, bits 2 and 3).
- 1: The spindle rotates by taking the shorter route.
- ROTAA (Signal for specifying the direction of rotation) •

This signal specifies the direction of rotation when the stop position of the spindle is changed in the stop status.

- 0: The spindle rotates counterclockwise (CCW).
- 1: The spindle rotates clockwise (CW).
- INDXA (Signal for changing the stop position)

This signal changes the stop position of the spindle. At the falling edge of the INDXA signal, the data of INCMDA and ROTAA and stop position data or incremental command data are read.

1 to 0: Command for changing the stop position

(2) PMC \leftarrow CNC (DI signals)

	(PC address)			b7	b6	b5	b4	b3	b2	b1	ь0
No.1 No.2				ORARA							

• ORARA (Orientation completion signal)

When set to 1, the ORARA signal indicates that orientation is completed. The signal is output when the following three conditions are satisfied:

- a. The spindle is close to the specified stop position (within the effective area). (Series 16: PRM4075)
- b. Spindle orientation is in progress. (ORCMA is set to 1.)
- c. The speed is zero. (SSTA is set to 1.)

	(P	C addre	ess)	b7	b6	b5	b4	b3	b2	b1	b0
No.1 No.2		15 F231 F247	16 F047 F051							INCSTA	

INCSTA (INCMDA status signal)

This signal indicates the status of INCMDA (signal for selecting the stop position data or incremental command data).

- 0: INCMDA is set to 0.
 - 1: INCMDA is set to 1

6.5.5 Parameters

This section describes the spindle control parameters that must be noted when executing the spindle orientation function with the incremental command set externally.

For other parameters, refer to the manual, "Descriptions of Quickest Spindle Orientation Control by a Position Coder."

(Par	ameter	No.)	
0C 6531 6671	15 3031	16 4031	Stop position in orientation by a position coder
00/1	31/1		

Data unit:	1 pulse (360°/4096 pulses)	
Data range:	0 to 4095 (Standard setting:	0)

 This parameter is invalid when either of the following functions is executed: The spindle orientation function with the stop position set externally or the spindle orientation function with the incremental command set externally. The data of SHA00 to SHA11 specified by PMC is validated instead. Set this parameter to 0. (Parameter No.) 0C 15 16 6577 3077 4077 6717 3217

Shift distance of stop position in orientation

Data unit: ±1 pulse Data range: -4095 to +4095 (Standard setting: 0)

 This parameter is used when the stop position is shifted. When a positive value is specified, the spindle shifts in the counterclockwise (CCW) direction. When a negative value is specified, the spindle shifts in the clockwise (CW) direction. Specify the stop position with this parameter.

(Parameter No.)

0C 15 16 6292 3472 4328 6472 3692

0

Command multiplication for spindle orientation by a position coder (Main spindle with the spindle switching function)

Data unit:

Data range: 0 to 32767 (Standard setting: 0 Command multiplication is 1.)

This parameter specifies the command multiplication for the spindle orientation function with the incremental command set externally.

When this parameter is set to 0, command multiplication is automatically set to 1. To control the spindle speed, set this parameter to 4096.

(Parameter No.)			
	15 3473 3693	16 4329	Command multiplication for spindle orientation by a position coder (Sub-spindle with the spindle switching function)

6.6 Quickest Spindle Orientation Control by a Position Coder

6.6.1 General

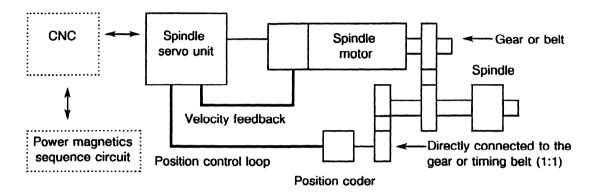
The function for quickest spindle orientation control by a position coder is added as a feature for spindle orientation control by a position coder. When a spindle orientation command is entered, the new function stops the spindle in place according to the deceleration constant which allows full utilization of the deceleration capability of the spindle motor. This reduces the orientation time. When related parameters are specified, the quickest spindle orientation control can be executed for the following functions: The spindle orientation function with the position set externally and the spindle orientation function with the incremental command set externally.

(Note 1) This manual describes only the action to stop the spindle in place by the spindle orientation command (ORCM). Quickest orientation control can be executed for the following orientation functions. For details, refer to the corresponding descriptions:

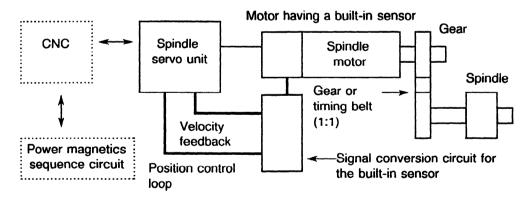
- (1) Spindle orientation function with the position set externally
- (2) Spindle orientation function with the incremental command set externally

(Note 2) Applicable serial interface spindle amplifier (IGBT type):

A06B-6064-H3xx#H550

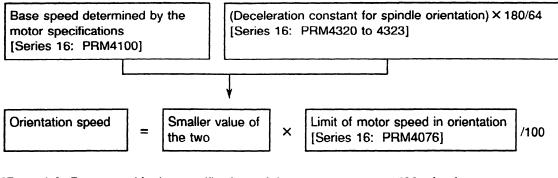

Applicable control software series:

9A50, I and later editions

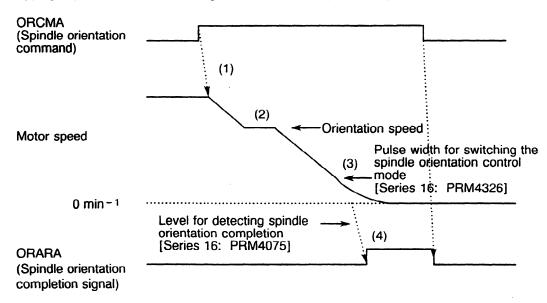

(Note 3) Applicable CNC: Series 0-C, 15, 16, and 18

6.6.2 System configurations

(1) System in which the position coder is linked to the spindle



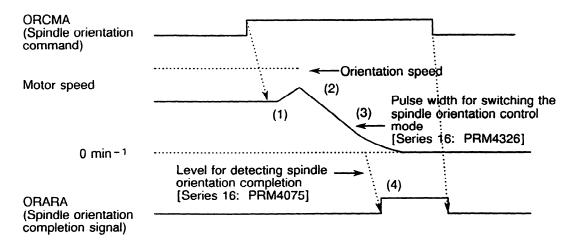
- (2) Motor system built into the spindle
- (3) System in which the spindle and the motor having a built-in sensor are directly linked by a gear or timing belt at a ratio of 1:1



6.6.3 Quickest orientation action

The orientation speed is calculated as follows:

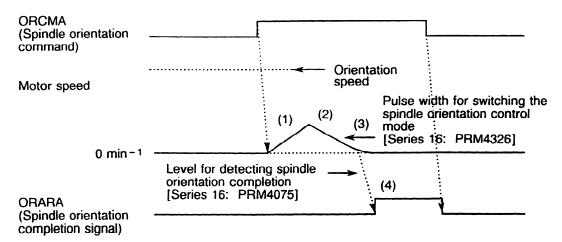
- [Example] Base speed in the specifications of the motor output = 1500 min^{-1} Constant for quickest orientation = $640 \rightarrow 640 \times 180/64 = 1800 \text{ min}^{-1}$ Limit of motor speed in orientation = 100%Orientation speed = $1500 \times 100/100 = 1500 \text{ min}^{-1}$
- (1) Stopping in place the spindle rotating at the orientation speed or higher



- (a) When spindle orientation command ORCMA is entered while the spindle is rotating at the orientation speed or higher, the spindle speed is reduced to the orientation speed.
- (b) When the single rotation signal is detected (only in the first orientation after the power is turned on) at the orientation speed and the position loop is completed, the spindle speed is reduced according to the deceleration constant for spindle orientation [Series 16: PRM4320 to PRM4323]. In the second and subsequent orientations, the spindle need not be rotated at the orientation speed because the single rotation signal has already been detected. So, the corresponding time is reduced.
- (c) When an error pulse becomes less than or equal to the pulse width for switching the spindle orientation control mode [Series 16: PRM4326], the spindle reduces speed according to the position gain calculated by the software.

(d) When an error pulse becomes less than or equal to the level for detecting spindle orientation completion [Series 16: PRM4075], spindle orientation completion signal ORARA is output. The spindle is controlled according to the position gain in spindle orientation [Series 16: PRM4060 to PRM4063]. The spindle stops at the position obtained by the following expression:

[Position of the single rotation signal] + [Orientation stop position + Shift distance parameter] (Series 16: PRM4031 + PRM4077)


(2) Stopping in place the spindle rotating at the orientation speed or lower

- (a) When spindle orientation command ORCMA is entered while the spindle is rotating at the orientation speed or lower, the single rotation signal is detected (only in the first orientation after the power is turned on) and the position loop is completed. The spindle speed is increased a little so that the stop position can be adjusted. In the second and subsequent orientations, acceleration is not required because the single rotation signal has already been detected. So, the corresponding time is reduced.
- (b) The spindle reduces its speed according to the deceleration constant for spindle orientation [Series 16: PRM4320 to PRM4323].
- (c) When an error pulse becomes less than or equal to the pulse width for switching the spindle orientation control mode [Series 16: PRM4326], the spindle reduces speed according to the position gain calculated by the software.
- (d) When an error pulse becomes less than or equal to the level for detecting spindle orientation completion [Series 16: PRM4075], spindle orientation completion signal ORARA is output. The spindle is controlled according to the position gain in spindle orientation [Series 16: PRM4060 to PRM4063]. The spindle stops at the position obtained by the following expression:

[Position of the single rotation signal] + [Orientation stop position + Shift distance parameter] (Series 16: PRM4031 + PRM4077]

(3) Stopping the spindle in the stop status in place

- (a) In the first orientation after the power is turned on, the spindle stops in place after the single rotation signal is detected. When the speed is less than the zero speed level (SST is set to 1) in the second and subsequent orientations, the spindle stops in place before it turns once. The parameter specifying the direction of rotation [Series 16: PRM4003, bits 2 and 3] applies to the spindle motor. When the rising edge of spindle orientation command ORCMA is detected, a position loop is completed.
- (b) The spindle reduces speed according to the deceleration constant for spindle orientation [Series 16: PRM4320 to PRM4323].
- (c) When an error pulse becomes less than or equal to the pulse width for switching the spindle orientation control mode [Series 16: PRM4326], the spindle reduces speed according to the position gain calculated by the software.
- (d) When an error pulse becomes less than or equal to the level for detecting spindle orientation completion [Series 16: PRM4075], spindle orientation completion signal ORARA is output. The spindle is controlled according to the position gain in spindle orientation [Series 16: PRM4060 to PRM4063]. The spindle stops at the position obtained by the following expression:

[Position of the single rotation signal] + [Orientation stop position + Shift distance parameter] (Series 16: PRM4031 + PRM4077]

(Note) When NRROA (signal for taking the shorter route) is specified, the spindle rotates to the target stop position by taking the route and stops. Rotation by the shorter route (up to $\pm 180^{\circ}$) can be executed only when the following conditions are satisfied:

- NRROA (Series 16: G072, bit 2) is set to 1.
- NRROEN (Series 16: 4017, bit 7) is set to 1.
- RFCHK3 (Series 16: 4016, bit 7) is set to 0.
- The speed is zero. (SST is set to 1.)

6.6.4 PMC signals (DI/DO signals)

This section describes the PMC signals (DI/DO signals) used for quickest spindle orientation control.

(1) PMC \rightarrow CNC (DO signals)

	(PC address)			b7	b6	b5	b4	b 3	b2	b1	b0
No.1 No.2		15 G227 G235			ORCMA			CTH1A	CTH2A		

- ORCMA (Spindle orientation command signal)
 - 1: Spindle orientation is executed.
- CTH1A, CTH2A (Signals for selecting a gear or clutch)

These signals select the proper spindle control parameters (position gain, velocity loop gain, gear ratio, etc.) for the gear or clutch selected.

The parameters selected by these signals are described in Section 6.6.5, "Parameters." These parameters select the following gear or clutch statuses. Select the appropriate parameter from those listed in the table below.

CTH1A	CTH2A	Spindle control parameter status					
0	0	(High)	(High)				
0	1	(Medium High)	(High)				
1	0	(Medium Low)	(Low)				
1	1	(Low)	(Low)				

	(PC address)			b7	b6	b5	b4	b3	b2	b1	b0
No.1 No.2	0C G231 G235	15 G229 G237	16 G072 G076						NRROA		

• NRROA (Signal for taking the shorter route)

When this signal is set to 1 during spindle orientation from the stop status, the spindle rotates by taking the shorter route and stops at the target stop position.

1: The spindle rotates by taking the shorter route.

The spindle can rotate by taking the shorter route only when the following conditions are satisfied:

- NRROEN (Series 16: 4017, bit 7) is set to 1.
- RFCHK3 (Series 16: 4016, bit 7) is set to 0.
- The speed is zero. (SST is set to 1.)

(2) PMC \leftarrow CNC (DI signals)

	(PC address)			b7	b6	b5	b4	b3	́ b2	b1	ь0
No.1 No.2		15 F229 F245		ORARA							

ORARA (Orientation completion signal)

ORARA is set to 1 when orientation is completed. The signal is output when the following conditions are satisfied:

- a. The spindle is close to the specified stop position (within the effective area). (Series 16: PRM4075)
- b. Orientation is in progress. (ORCMA is set to 1.)
- c. The speed is zero. (SSTA is set to 1.)

	(PC address)			b7	b6	b5	b4	b3	b2	b1	b0
No.1 No.2	0C F282 F286	15 F228 F244	16 F046 F050			PORAR2					

The signal is validated when the parameter (Series 16: PRM4312) is set to a value other than zero.

• PORAR2 (Signal 2 of orientation completion by a position coder)

PORAR2 is set to 1 when the stop position is within effective area 2 specified for orientation completion by a position coder. This signal is output when the following conditions are satisfied:

- a. The spindle is close to the specified stop position (within effective area 2). (Series 16: PRM4312)
- b. Orientation by a position coder is in progress. (ORCMA is set to 1.)
- c. The speed is zero. (SSTA is set to 1.)

6.6.5 Parameters

This section describes the spindle control parameters to be specified for quickest spindle orientation control.

(Par	ameter	No.)								
0C	15	16	b7	b6	b5	b4	b3	b2	b1	ь0
6500 6640	3000 3140	4000						POSC1		ROTA1

ROTA1: The spindle and motor rotate:

- 0: In the same direction.
- 1: In opposite directions.

POSC1: The spindle and position coder rotate:

- 0: In the same direction.
- 1: In opposite directions.

(Par	ameter	No.)								
0C	15	16	b7	b6	b5	b4	b3	b2	b1	60
6501 6641	3001 3141	4001	CAXIS3	CAXIS2	CAXIS1			POSC2		

POSC2: The position coder signal is:

1: Used. (Always specify this value.)

CAXIS1: A high-resolution magnetic pulse coder (to be installed in the spindle) is:

- 0: Not used.
- 1: Used.

CAXIS2: The position detection signal of the high-resolution magnetic pulse coder is:

- 0: Not used for speed detection. (The spindle and spindle motor are installed separately.)
- 1: Used for speed detection. (The spindle has a built-in motor.)
- CAXIS3: The high-resolution magnetic pulse coder is mounted so that the spindle and the position detector rotate:
 - 0: In the same direction.
 - 1: In opposite directions.

(Para	ameter	No.)								
0C	15	16	67	b6	b5	b4	b3	b2	b1	b0
6503 6643	3003 3143	4003	PCPL2	PCPL1		PCTYPE	DIRCT2	DIRCT1		PCMGSL

PCMGSL: Orientation is executed:

0: In the PC method. (Always specify this value.)

DIRCT2, DIRCT1: The direction of rotation in the orientation is:

- 00: Determined by the direction of the most recent rotation. (In the first rotation, the direction is counterclockwise.)
- 01: Determined by the direction of the most recent rotation. (In the first rotation, the direction is clockwise.)
- 10: Counterclockwise (CCW), when viewed from the motor shaft.
- 11: Clockwise (CW), when viewed from the motor shaft.

(Note) When 00 or 01 is specified, the direction of rotation is determined by the direction of the most recent rotation whose speed is greater than or equal to the zero speed level (SST signal is set to 0).

PCTYPE: The number of pulses per revolution of the position coder is:

- 0: 1024 p/rev.
- 1: 512 p/rev.

PCPL2, PCPL1: The number of pulses of the position coder containing a high-resolution magnetic pulse coder is:

00: 1024 p/rev. (The diameter of the detector is 65 mm.)

01: 2048 p/rev. (The diameter of the detector is 130 mm.)

10: 3072 p/rev. (The diameter of the detector is 195 mm.)

11: 1536 p/rev. (The diameter of the detector is 97.5 mm.)

(Par	ameter	No.)									
0C	15	16	b7	b6	b5	b4	b3	b2	b1	b0	
6515	3015	4015								LODIENT.	
6655	3155									ORIENT	

ORIENT: The spindle orientation function which requires CNC software option is: 1: Provided. (Always specify this value.)

(Par	ameter	No.)								
0C	15	16	b7	b6	b5	b4	b3	b2	b1	b0
6517 6657	3017 3157	4017	NRROEN					RFCHK4		

RFCHK4: During normal rotation, the single rotation signal of the position coder is:

0: Not detected. (Conventional function)

1: Detected.

When this parameter is set to 1, the time required for spindle orientation by the position coder can be reduced immediately after the rotation speed exceeds the maximum speed for detecting the position coder signal [Series 16: PRM4098].

NRROEN: If this parameter is set to 1, the shorter route function is validated when the command for executing orientation from the stop status is entered. The shorter route function is executed only when the following conditions are satisfied:

- NRROEN is set to 1.
- RFCHK3 (Series 16: 4016, bit 7) is set to 0.
- The speed is zero. (SST is set to 1.)
- NRROA (Series 16: G72, bit 2) is set to 1.

(Parameter No.)

0C 15 16 6531 3031 4031 6671 3171

Stop position in orientation by a position coder

Data unit:1 pulse (360°/4096 pulses)Data range:0 to 4095 (Standard setting: 0)

(Parameter No.) 0C 15 16 Proportional gain of velocity loop in orientation (high) 6542 3042 4042 6682 3182 6543 3043 4043 Proportional gain of velocity loop in orientation (low) 6683 3183

Data range: 0 to 32767 (Standard setting: 10)

These parameters adjust the response during orientation deceleration and the rigidity in the stop status. Specify the highest possible value which will not cause vibration while orientation is stopped.

(Para	ameter	No.)		
0C 6550 6690	15 3050 3190	16 4050	Integral gain of velocity loop in orientation (high)	
6551 6691	3051 3191	4051	Integral gain of velocity loop in orientation (low)	

Data range: 0 to 32767 (Standard setting: 10)

These parameters adjust the rigidity in the orientation stop status. Specify a value of up to five times the proportional gain of velocity loop in orientation.

(Par	ameter	No.)	
0C 6556 6696	15 3056 3196	16 405C	Gear ratio (high)
6557 6697	3057 3197	4057	Gear ratio (medium high)
6558 6698	3058 3198	4058	Gear ratio (medium low)
6559 66 9 9	3059 3199	4059	Gear ratio (low)

Data unit:	Motor speed for one rotation of the spindle \times 100 (or 1000)
Data range:	0 to 32767 (Standard setting: 100)

- Specify the gear ratio of the spindle motor to the spindle.
 (Example) When the motor turns 2.5 times while the spindle turns once, specify 250 (2.5 × 100).
 - (Note) When bit 1 of PRM4006 is set to 1 in the Series 16, specify a multiple of 1000.

(Para	ameter	No.)	
0C 6560 6700	15 3060 3200	16 4060	Position gain in orientation (high)
		4004	Position spin in orientation (modium high)
6561 6701	3061 3201	4061	Position gain in orientation (medium high)
6562 6702		4062	Position gain in orientation (medium low)
0702	3202		r
6563 6703	3063 3203	4063	Position gain in orientation (low)

Data unit: 0.01 sec-1

Data range: 0 to 32767 (Standard setting: 1000)

The position gain specified in this parameter is validated when the orientation is completed (ORAR is set to 1) in quickest spindle orientation. If the pulse width for switching the spindle orientation control mode (Series 16: PRM4326) is set to 0, the mode is switched when the number of pulses becomes 205. The position gain can be increased to the value obtained by the following expression:

[Deceleration constant for spindle orientation (PRM4320 to PRM4323)] \times 106/ $\sqrt{205}$

If the spindle vibrates while it is stopped, specify a value less than that obtained by the expression above.

(Parameter	No.)	
0C 15 6564 3064 6704 3204	16 4064	Modification rate of position gain after orientation is completed
Data unit:	1%	
Data range:	0 to	1000 (Standard setting: 100)
(Parameter	No.)	
0C 15 6575 3075 6715 3215	16 4075	Level for detecting the orientation completion signal (effective area)
Data unit:		pulse
Data range:	0 to	100 (Standard setting: 10)
(Parameter	No.)	
0C 15 6576 3076 6716 3216	16 4076	Limit of motor speed in orientation
Data unit:	1%	
Data range:	0 to	100 (Standard setting: 33)
	Cha	nge this parameter from 33 to 100.

 In quickest orientation control, usually specify 100 for this parameter. If PRM4100 of Series 16 is set to 3000 or a larger value, specify the value obtained by the following expression:

Value of this parameter = $\frac{3000}{\text{Value of PRM4100}} \times 100$

[Series 16: PRM4100] = Base speed determined by the rated motor output (Standard setting: Depends on the motor model)

```
(Parameter No.)

OC 15 16

6577 3077 4077 Shift distance of stop position in orientation

6717 3217 Data unit: ±1 pulse
```

Data range: - 4095 to + 4095 (Standard setting: 0)

 This parameter is specified when the stop position is shifted. When a positive value is specified, the spindle stop position is shifted counterclockwise. When a negative value is specified, the spindle stop position is shifted clockwise.

```
(Parameter No.)
0C
      15
              16
6584
             4084
                      Motor voltage in orientation
      3084
6724
      3224
Data unit:
             1%
Data range: 0 to 100 (Standard setting: Depends on the motor model)
 (Parameter No.)
0C
      15
             16
6598
      3098
             4098
                      Maximum speed for detecting the position coder signal
6738
      3238
Data unit:
             1 rpm (10 rpm when PRM4006, bit 2 of Series 16 is set to 1)
Data range: 0 to 32767 (Standard setting: 0, maximum motor speed)
 (Parameter No.)
0C
      15
             16
6284
                      Deceleration constant for spindle orientation (high)
      3464
             4320
6464
      3684
                      Deceleration constant for spindle orientation (medium high)
      3465
             4321
6285
6465
      3685
                      Deceleration constant for spindle orientation (medium low)
      3466
             4322
6286
      3686
6466
                      Deceleration constant for spindle orientation (low)
6287
      3467
             4323
6467
      3687
```

Data range: 0 to 32767 (Standard setting: 0 When this parameter is set to 0, the conventional control method is applied.)

Value of the parameter =

meter =
$$\sqrt{\frac{Nb}{Tb}} \times \frac{120}{1} \times \frac{GEAR}{GEARUNIT} \times (0.8 \sim 0.9)$$

Nb = Base speed of spindle motor (rpm) Tb = Time required to accelerate to the base speed of the spindle motor (s) GEAR = Gear ratio [Series 16: PRM4056 to PRM4059] GEARUN = Unit of gear ratio

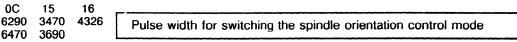
> [Series 16: When PRM4006, bit 1 is set to 0, GEARUN is 100.] [Series 16: When PRM4006, bit 1 is set to 1, GEARUN is 1000.]

Specify the value obtained by the expression above. When the value must be specified in units of 10 rpm [Series 16: PRM4006, bit 2 is set to 1], specify one tenth of the value obtained by the expression above.

[Example] Nb = 1500 rpm: Base speed of the spindle motor (rpm)

Tb = 1 s: Time required to accelerate to the base speed of the spindle motor (s) GEAR = 200: Gear ratio [Series 16: PRM4056 to PRM4059]

GEARUN = 100: Unit of gear ratio [Series 16: PRM4006, bit 1 is set to 0]


[1 rpm when PRM4006, bit 2 is set to 0 in Series 16]

In this example, the base speed of the spindle motor is 1500 rpm. The spindle speed is 750 rpm. Tb is the time required to increase the spindle speed to 750 rpm.

Value of the parameter =
$$\sqrt{\frac{Nb}{Tb}} \times \frac{120}{1} \times \frac{GEAR}{GEARUNIT} \times (0.8 \sim 0.9)$$

= $\sqrt{\frac{1500}{1}} \times \frac{120}{1} \times \frac{200}{100} \times (0.8 \sim 0.9) = 480 \sim 540$

An approximate value of Nb/Tb can be obtained by making the following calculation: Nb/Tb = $Tm/(Jm + JL) \times 60/2\pi$, where Tm is the 30-min. rated torque [Kgm] and Jm + JL is rotor + load inertia (Kgmsec²).

(Parameter No.)

Data unit: (Number of pulses for switching the control mode) $1/2 \times 64$ Data range: 0 to 32767 (Standard setting: 0)

If this parameter is set to 0, the mode of positioning by a position gain is selected when the position deviation becomes 205 pulses (5% of 4096 pulses) or less. To switch the orientation control mode when the position deviation becomes 256 pulses or less, specify the value obtained by the following expression:

Value of parameter = $\sqrt{256 \times 64} = 16 \times 64 = 1024$

(Parameter No.) OC 15 16 6294 3474 4330 Motor activation delay in spindle orientation 6474 3694 Data unit: ms Data range: 0 to 32767 (Standard setting: 0)

When this parameter is set to 0, the delay time is 50 ms. This is validated only when the spindle speed is less than or equal to the orientation speed and greater than or equal to the zero speed level. If the spindle orientation is started when the spindle speed is less than or equal to the orientation speed and greater than or equal to the zero speed level, an overshoot can occur when stopping. This overshoot may be prevented by setting a value of 50 ms or more in this parameter.

(Para	ameter	No.)	
0C 6276 6456	15 3456 3676	16 4312	Level 2 for detecting the signal of orientation completion by a position coder

Data unit: ± 1 pulse Data range: 0 to 32767 (Standard setting: 0)

When the stop position is within this data range, PORAR2 is set to 1. The signal is validated when the parameter is set to a value other than 0.

FS0	FS15	FS16	
6140 to 6159 6320 to 6339	3320 to 3339 3540 to 3559	4176 to 4195	Bit parameter area (Example) Series 16 The contents of bit parameter area PRM4000 to PRM4019 of the main spindle with the function for switching the spindle correspond to those of PRM4176 to PRM4195 of the sub-spindle with the function for switching the spindle.
6168 6348	3348 3568	4204	Stop position in orientation by a position coder
6172 6352	3352 3572	4208	Proportional gain of velocity loop in orientation (high)
6173 6353	3353 3573	4209	Proportional gain of velocity loop in orientation (low)
6177 6357	3357 3577	4213	Integral gain of velocity loop in orientation
6180 6360	3360 3580	4216	Gear ratio (high)
6181 6361	3361 3581	4217	Gear ratio (low)
6182 6362	3362 3582	4218	Position gain in orientation (high)
6183 6363	3363 3583	4219	Position gain in orientation (low)
6184 6364	3364 3584	4220	Modification rate of position gain after orientation is completed
6190 6370	3370 3590	4226	Level for detecting the orientation completion signal (effective area)
6191 6371	3371 3591	4227	Limit rate of motor speed in orientation
6192 6372	3372 3592	4227	Shift distance of stop position in orientation
6201 6381	3381 3601	4237	Motor voltage in orientation
6280 6460	3460 3680	4316	Level 2 for detecting the signal of orientation completion by a position coder
6288 6468	3468 3668	4324	Deceleration constant for spindle orientation (high)
6289 6469	3469 3669	4325	Deceleration constant for spindle orientation (low)
6291 6471	3471 3691	4327	Pulse width for switching the spindle orientation control mode
6295 6475	3475 3695	4331	Motor activation delay in spindle orientation

Parameters of the sub-spindle with the function for switching the spindle

(Note 1) The sub-spindle with the function for switching the spindle may not have some of the parameters of the main spindle with the function for switching the spindle. The sub-spindle shares these parameters with the main spindle.

(Note 2) The sub-spindle with the function for switching the spindle can be made to set high or low in the spindle control parameter by the signals for selecting a gear or clutch, CTH1A and CTH2A.

6.6.6 Precautions

Take the following precautions in orientation:

- (1) ORCMA (orientation command)
 - (a) Set ORCMA to 0 when the power is turned on.
 - (b) Before turning the power on, return the ATC arm to the safety area. The arm will not be broken even if the spindle or tool turns.
 - (c) When entering ORCMA, set SFRA (forward spindle rotation) or SRVA (reverse spindle rotation) and the speed command to 0 for the sake of safety. The spindle will not rotate even if ORCMA is set to 0.
 - (d) Set ORCMA to 0 by the signal indicating that a tool is changed or the signal indicating that a workpiece is loaded or unloaded.
 - (e) Reset ORCMA to 0 if an alarm or emergency stop occurs during orientation.
- (2) ORARA (orientation completion signal)
 - (a) If ORARA is not returned during the specified time period after ORCMA is specified, an error may have occurred. Design the power magnetics sequence circuit so that it identifies this error and issues an orientation alarm.
 - (b) Start changing a tool or loading or unloading a workpiece when ORARA is set to 1.
 - (c) ORARA indicates that the spindle is close to the specified stop position. ORARA is not a true stop signal. For a machine with an ATC having a short action time, allow a short time (0.1 to 0.5 s) before starting an action so that the arm can hold a tool after the spindle is fully stopped.
 - (d) ORARA is set to 0 when an external force is applied and the spindle is out of place. In this case, stop changing a tool, but do not release the orientation signal. Resume changing the tool after ORARA is returned to 1.

7. POSITION CODER

7.1 Electrical Specifications

(1) Number of square waves/rotation

Channel	Signal
1ch	1024 pulses/rotation (A, B phases)
2ch	1 pulse/rotation (C phase)

(2) Power supply

Voltage	Current
+5V +5% - 10%	350 mA or less

(3) Working ambient temperature range

0 ~+50°C

(4) Output terminal

 Canon connector MS3102A20-29P (Position coder side) MS3106A20-29S (Cable side)

The cable side Canon connector and the cable clamp are provided with the position coder.

(5) Output terminal

Α	В	С	D	E	F	G	н	J
PA	ΡZ	PB					+ 5V	
к	L	м	N	Р	R	S	Т	
٥V			*PA	*PZ	*PB			

7.2 Mechanical Specifications

- (1) Input axis inertia $1.0 \times 10^{-3} \text{ kg} \cdot \text{cm} \cdot \text{s}^2$ or less
- (2) Input axis torque 1000 g-cm or less

(3) Input axis load tolerance

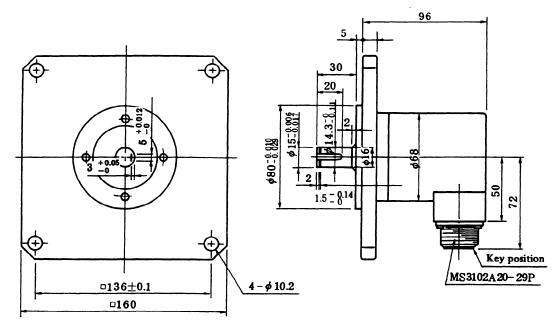
	When stopped	During rotation.		
Thrust load	10 kg or less	5 kg or less		
Radial load	20 kg or less	10 kg or less		

- (4) Structure dust proof and oil-proof. (IP43)
- (5) Weight: about 1 kg (without flange)
- (6) Accessories

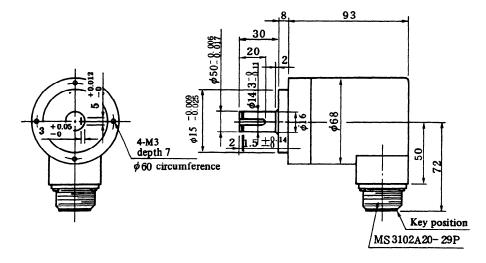
	Name	Specifications	No. of pieces
1	Canon connector	MS3106B20-29S	1
2	Cable clamp	MS3057-12A	1

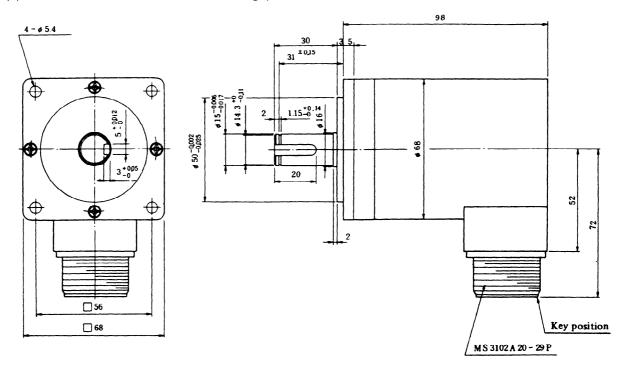
7.3 Storage

Avoid storing in a humid place.


When moving the product, put it in a packing case and do not drop or throw it.

7.4 Caution in Use


- (1) If there is backlash in the interface between the position coder and the spindle, the stop position will vary. Therefore, the position coder should be linked to the spindle so as to eliminate backlash. If the position coder is installed with a timing belt or a gear, check carefully and periodically for backlash due to ageing or mechanical wear.
- (2) Eccentricity of the body and the center of the axis should be 0.02 or less.
- (3) Do not give strong mechanical impact as plate glass is used. To avoid penetration of oil or water from the Canon connector, install the latter upside down.
- (4) Keep at least 50 cm away from the magnetics cabinet. Keep at least 30 cm away from the cable line of a motor or the like; out of which a substantial amount of instantaneous current flows at the time of ON-OFF. In particular, when an object which generates radiation noise (such as discharge processing device, electric welder and the like) is in the vicinity, electro-magnetic shielding should be considered.


7.5 External Dimensions

(2) Position coder E,F,H (without flange)

(3) Position coder J,K,L (with 68×68 flange)

.

X. MAGNETIC SENSOR METHOD SPINDLE ORIENTATION

1. GENERAL

Unlike conventional mechanical spindle orientation using a stopper, etc., the spindle orientation stops the spindle at a fixed position by directly feeding back position signals from the magnetic sensor directly connected to the machine spindle.

2. FEATURES

(1) Mechanical parts are not required.

This orientation is accomplished simply by connecting the magnetic sensor to the spindle without any need of mechanical orientation mechanism (stopper, pin, etc.) for spindle orientation.

(2) Reduction of orientation time

Since the spindle motor connected to the spindle is utilized and the orientation can be performed directly from high-speed rotation, irrespective of gear shift, the orientation time is largely reduced.

(3) Simplified power magnetic sequence control

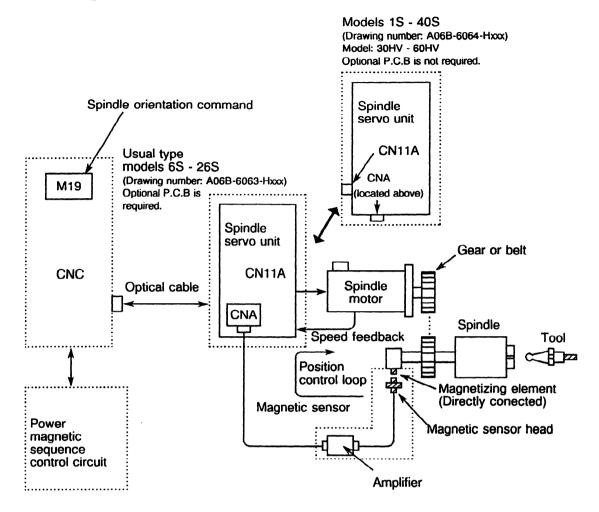
This sequence consists of the spindle orientation command, its completion signal, spindle high/low signal and spindle medium speed signal only without any need of other signals. Neither orientation speed command sequence nor torque limit command sequence is needed.

(4) High reliability

Electrical system assures improved reliability without any damage to the mechanical section against an external impact.

(5) High accuracy and rigidity

The spindle orientation accuracy and rigidity are enough to execute automatic tool exchange (ATC).


- (6) Positioning of workpieceWorkpieces can be positioned to arrange their loading and unloading directions in lathe.
- (7) Reduction of the number of processes in boring

Since the spindle orientation can be done in the same direction as the rotating direction of the spindle when boring ends, workpieces will not be damaged by tool blades. Since these tool blades can be mounted or dismounted in a fixed direction with reference to

the workpieces, programming is easy.

3. CONFIGURATION AND ORDER DRAWING NUMBER

3.1 Configuration

3.2 Order Drawing Numbers

3.2.1 Magnetic sensor signal input circuit

Classification	Name	Specification No.	Remarks		
Option	Magnetic sensor signal input circuit	A06B-6063-J700	Models 6S - 26S Needed only for units A06B-6063-H2XX.		

(Note) The magnetic-sensor-signal input circuit is not necessary for improved models 1S to 40S, 30HV to 60HV.

Classification	Name	Specification No.	Remarks			
Option	No specification, standard	A57L-0001-0037	Spindle speed: 12,000 min ⁻¹ or less			
	Magnetic sensor N	A57L-0001-0037 / N	Standard: (TYPE II)			
	Magnetic sensor P	A57L-0001-0037 / P	Spindle speed: 12,000 min - 1 or less Small type (TYPE III)			
:	Magnetic sensor Q	A57L-0001-0037 / Q	Spindle speed: 20,000 min ⁻¹ or less Cylindrical type with ID of 40 (TYPE IV)			
	Magnetic sensor R	A57L-0001-0037 / R	Spindle speed: 20,000 min ⁻¹ or less Cylindrical type with ID of 50 (TYPE V)			
	Magnetic sensor S	A57L-0001-0037 / S	Spindle speed: 15,000 min ⁻¹ or less Cylindrical type with ID of 60 (TYPE VI)			
	Magnetic sensor T	A57L-0001-0037 / T	Spindle speed: 15,000 min ⁻¹ or less Cylindrical type with ID of 70 (TYPE VII)			

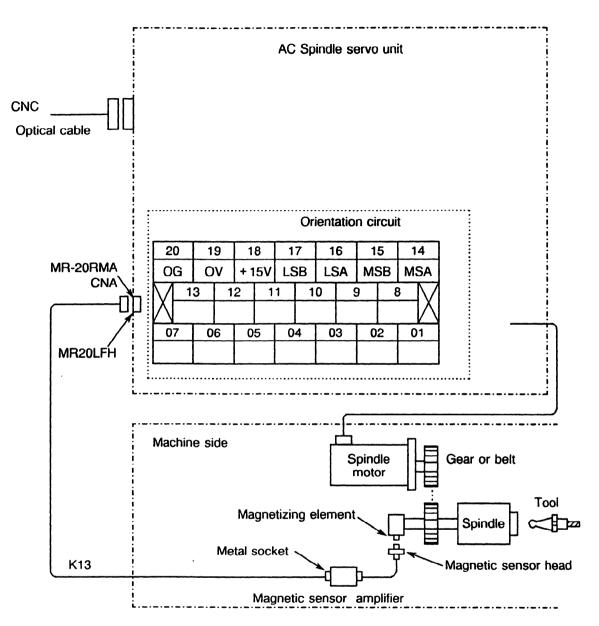
3.2.2 Magnetic sensor

3.2.3 Spindle orientation function software (CNC optional software)

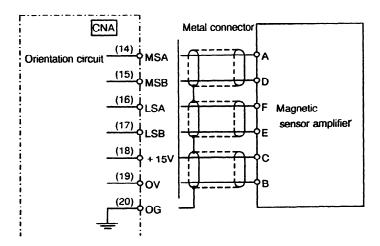
Series15M/T	: A02B-0094-J730
Series 0MC	: A02B-0099-J982
Series 0TC	: A02B-0098-J982
Series 16M	: A02B-0121-J853
Series 16T, TT	: A02B-0120-J853
Power Mate-MODEL A	: A02B-0118-J803
Power Mate-MODEL B	: A02B-0122-J803

3.2.4 Setting parameters for the spindle orientation function with magnetic sensor (parameter address)

РМ	oC	15	16	Data
3003 #0	6503 #0	3003 #0	4003 #0	Set the parameter to 1.


4. SPECIFICATIONS

No.	ltem	Description
1	Magnetic sensor	Refer to Chapter 7
2	Stop position	Stops when the center of the sensor head faces the center of the magnetizing element or the stop position check scale of the magnetizing element. The stop position can be adjusted to within $\pm 1^{\circ}$ by the circuit.
3	Repeatability	$\pm 0.2^{\circ}$ or less. Excluding factors such as errors from the machine side, for example, setting errors.
4	Max. hold torque at orientation	Continuous rated torque of the AC spindle motor.
5	Range where spindle can be orientated	Orientation stop position ± 240°


.

5. CONNECTION

5.1 Interface

5.1.1 Connection when magnetic sensor

The length of the cable connecting the AC spindle servo unit with the magnetic sensor amp should be not more than 20m.

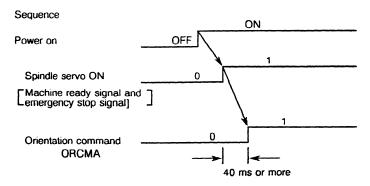
6. SIGNAL EXPLANATION

6.1 Spindle Control Signals

6.1.1 DI signals (PMC to CNC)

	РМ	0C	15	16	7	6	5	4	3	2	1	0
					MRDYA	ORCMA	SFRA	SRVA	CTH1A	CTH2A	TLMHA	TLMLA
Second :		G233	G235	G074								
						RSLA	INTGA	SOCNA	MCFNA	SPSLA	*ESPA	ARSTA
Second :		G234	G234	G075								

6.1.2 DO signals (CNC to PMC)


PM	0C	15	16	7	6	5	4	3	2	1	0
				ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
Second :	F285	F245	F049								
First : F229								RCFNA	RCHPA	CFINA	CHPA
Second :	F286	F244	F050								

6.2 Details of Signals

6.2.1 Orientation (fixed position stop) command (ORCMA) (ORCMA: First spindle side)

- (1) This command signal is used to stop spindle movement at the preset position to allow tool change and workpiece loading/unloading.
- (2) When this signal is specified as "1" while the spindle is rotating, the rotation decelerates immediately and the spindle stops at the preset position.
- (3) When the orientation command is issued, set the spindle forward/reverse rotation command (SFR, SRV) to "0" for safety. By means of this, the spindle will not start to rotate even in the unlikely event ORCMA becomes "0" during tool change.
- (4) Set this signal to "0" by the tool change completion signal or workpiece loading/unloading completion signal.

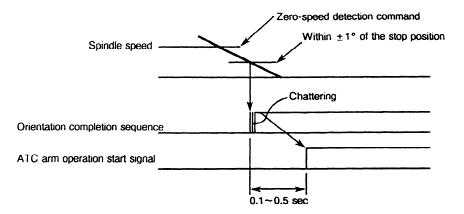
(5) Always set the orientation command signal to "0" when turning on power.

(6) When an emergency stop occurs during orientation, the orientation command signal must be reset ("0").

Return the ATC arm to the safe position so that it will not be dameged if the spindle or tool rotates when the power is turned on.

6.2.2 Orientation (fixed position stop) completion signal (ORARA) (ORARB: Second spindle side)

(1) When the orientation command is inputted and the spindle has stopped near the preset fixed position (for example, within +1), it becomes "1".


(Condition for ORARA to become "1" = $\frac{(ORCMA \text{ is "1"}) \times (\text{zero-speed signal})}{\text{Near to fixed position}}$

Near to fixed position is set to the parameter in case of Series 16: RRM4075 = Orientation complete signal detection level.

If the above 3 conditions are satisfied, the orientation complete signal is outputted.

If the orientation completion signal is not issued within a set period of time after the orientation command signal is input, it is considered to be abnormal. So it should be detected by the power magnetic sequence and an orientation alarm should be issued.

- (2) Tool change or workpiece loading /unloading operations can be started when this signal is "1".
- (3) The spindle orientation completion signal is issued when the spindle is within +% of the preset position and so it does not always indicate that the spindle has stopped completely. Some machines allow a very short operation time for the ATC arm to grip the tool. In this case, start the ATC arm operation after a short time (0.1 to 0.5 sec.) so that the arm will grip the tool when the spindle has stopped completely.

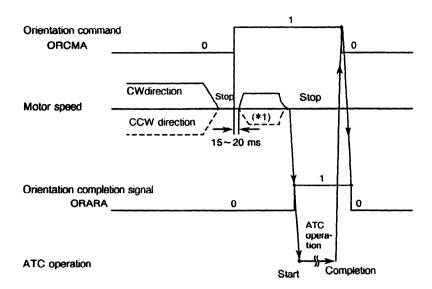
(4) This signal will become "0" during a tool change if the spindle is pushed away from the preset position by external force.

In this case, design a power magnetic sequence so that the tool change operation is interrupted.

However, do not release the orientation command, and if the orientation completion signal is issued again, perform a tool change.

(5) If the automatic tool change (ATC) structure is such that it may cause serious damage if a malfunction occurs, install a proximity switch to generate a verification signal when the ATC enters an area in which the automatic tool change operation can be performed. In addition to this, perform a double safety check by the power magnetic sequence and carry out a tool change.

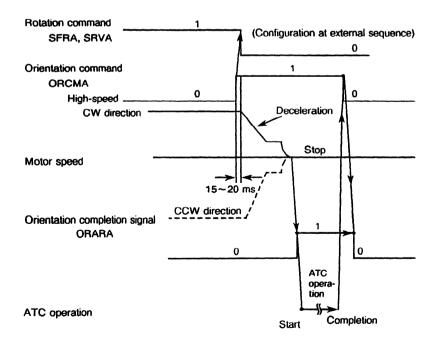
6.2.3 Gear/clutch signal (CTH1A, CTH2A)


- (1) These signal are used in order to shorten the orientation time when there are 2 speed change stages of high/low between the spindle and spindle motor.
- (2) Set the following conditions corresponding to the clutch or gear state. They are used in order to select the spindle control parameter (position gain, gear ratio).

CTH1A CTH2A

1

- 0 0 : HIGH GEAR
- 0 1 : MEDIUM HIGH GEAR
 - 0 : MEDIUM LOW GEAR
- 1 1 : LOW GEAR

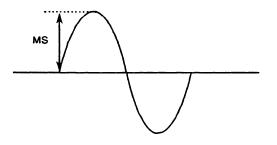

6.3 Sequences

6.3.1 Orientation command while stopping

(*1) The spindle motor rotation direction can be changed by setting. In standard setting, the spindle motor will stop at the fixed position in the direction the spindle motor was rotating before this orientation command signal was generated.

6.3.2 Orientation command during high-speed rotation

6.4 Parameter Setting for the MS Signal Gain through Magnetizing Element


			Parameter Number			
		No.	1 spindle	No. 2 spindle		
Series 15	:		3079	3219		
Series 0	:		6579	6719		
Series 16	:		4079			
Power Mate	:		3079			

		Magnetizing e			
Name	Specification No.	Туре	Length (mm)	MS signal gain	
No specification, standard	A57L-0001-0037		(TYPE II)	50	0
Magnetic sensor N	A57L-0001-0037 / N	Standard			0
Magnetic sensor P	A57L-0001-0037 / P	Small type	(TYPE III)	50	- 20
Magnetic sensor Q	A57L-0001-0037 / Q	Cylindrical type with ID of 40	(TYPE IV)	31	70
Magnetic sensor R	A57L-0001-0037 / R	Cylindrical type with ID of 50	(TYPE V)	37	50
Magnetic sensor S	A57L-0001-0037 / S	Cylindrical type with ID of 60	(TYPE VI)	43	70
Magnetic sensor T	A57L-0001-0037 / T	Cylindrical type with ID of 70	(TYPE VII)	49	40

(Note 1) Specify one of the values in the above table as the MS signal gain. The MS signal gain can, however, be determined as follows.

MS signal gain = 500/MS - 100

MS: Peak voltage (V) for the MS signal at check pin MS on the magnetic sensor signal input circuit measured with an oscilloscope

(Note 2) Install the magnetizing element and the magnetic sensor so that the gap between them is 1.0 to 2.0 mm. See Section 7.2.

6.5 Parameter Setting for the MS Signal Constant

		Parameter	Parameter Number			
		1st spindle	2nd spindle			
Series 15	:	3078	3218			
Series 0	:	6578	6718			
Series 16	:	4078				
Power Mate	:	3078				

How to determine the MS signal constant

MS signal constant = $(L/2)(2 \times \pi \times H) \times 4096$

- L: Length of the magnetizing element (mm) (See the above table.)
- H: Distance between the center of the spindle and the magnetizing element (mm) (See Section 7.3.)

7. MAGNETIC SENSOR

In the magnetic sensor method a magnetizing element is installed in the rotating chassis of the spindle. The spindle is made to stop at the fixed position by means of the installation of a magnetic sensor at the stop position.

The magetic sensor generates an analog signal corresponding to the position of the magnetizing element which has been installed in the spindle.

Use shielded cables in the wiring.

Other than the shield casing, all should be connected to OG.

The following shows the electrical specifications and the installation method for the magnetic sensor.

7.1 Electrical Specifications

(1) Number of square waves/rotation

Channnel	Signal		
1ch	1 pulse/rotation (MSA-MSB)		
2ch	1pulse/rotation (LSA-LSB)		

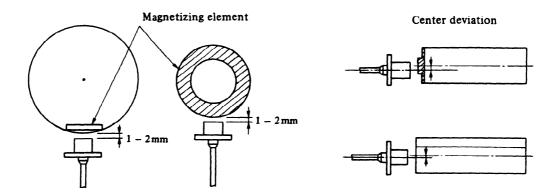
(2) Power supply

Voltage	Current		
+ 15V + 10%,— 10%	100 mA or less		

- (3) Maximum response rotation speed (magnetizing element) 8000 min-1
- (4) Working ambient temperature range (magnetic sensor) $0 \sim +50^{\circ}$ C

(5) Output terminal

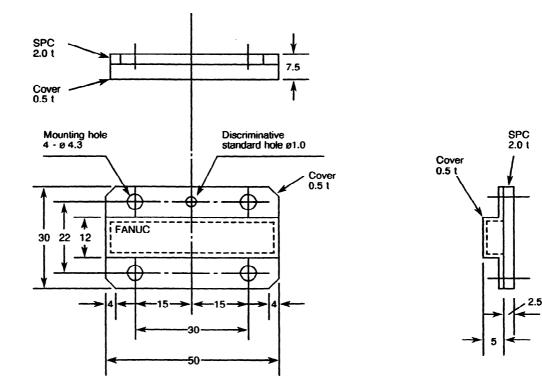
Installation is performed by the metal socket method on the cable side of the magnetic sensor amplfier provided.

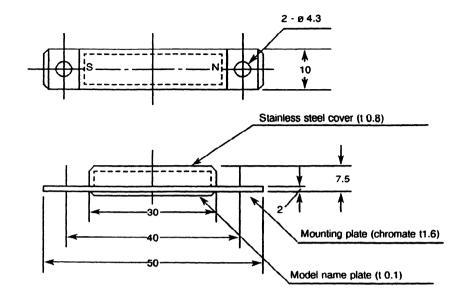

(6) Output terminal arrangement (magnetic sensor amplifier)

Terminal	А	В	С	D	Е	F
Signal name	MSA	0 V	+ 15V	MSB	LSB	LSA

7.2 External View

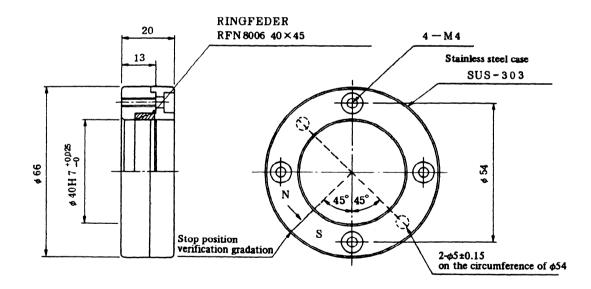
(1) Types of magnetic sensor

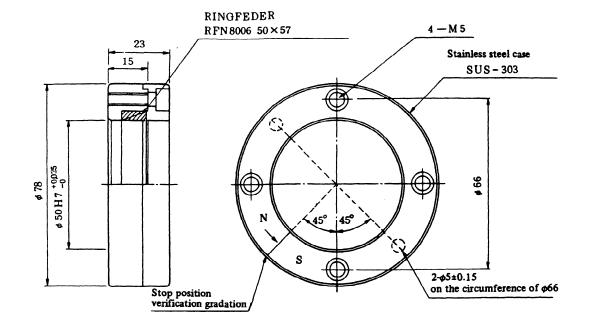

Items	Unit	Sensor N	Sensor P	Sensor Q	Sensor R	Sensor S	Sensor T
Maximum spindle speed	min-1	12,000		20,000		15,000	
Magnetizing element weight	g	33 ± 1.5	14.8±0.7	315±10	46 0 ± 10	770 ± 15	1000 ± 20
Allowable centrifugalforce (*1)	kg	255	130				
Mounting radius from the spindle center to the magnetizing element (*1)	mm	40~110		20	25	30	35
Gap width from magnetizing element to sensor (*2)	mm	1.0~2.0					
Deviation between the magnetizing element center and the sensor center (*3)	mm	0~ ±2.0					
Working temperature	°C	0~ + 50					
Diameter of applicable axis	mm			¢40 +0 -0.025	¢50 +0 -0.025	¢60 +0 −0.030	¢70 +0 -0.030


(*1) When the radius of the magnetizing element is large, maximum revolution is restricted due to allowable centrifugal force.

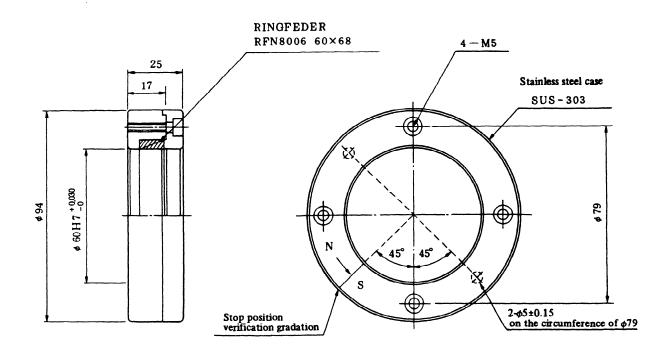
(+2) It is recommended to mount the magnetizing element using high-strength bolt.

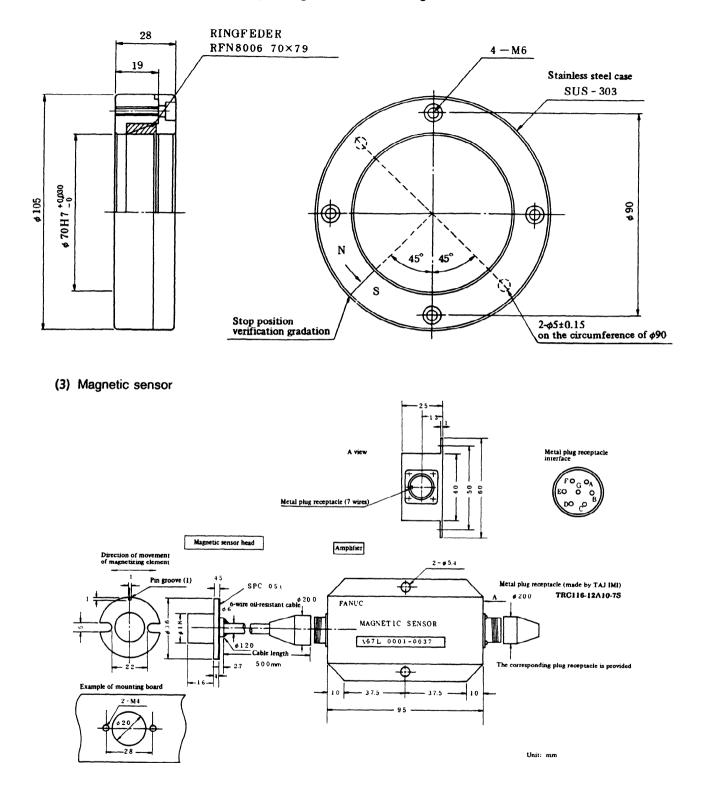
- (2) Magnetizing element
 - (a) External drawing of the magnetizing element for the magnetic sensor N.




Weight 33 g ± 1.5 g (Take care in respect of spindle balance)

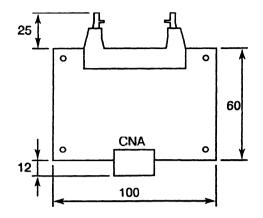
(b) External drawing of the magnetizing element for the magnetic sensor P

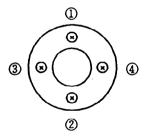

(c) External drawing of the magnetizing element for the magnetic sensor Q



(d) External drawing of the magnetizing element for the magnetic sensor R

(e) External drawing of the magnetizing element for the magnetic sensor S

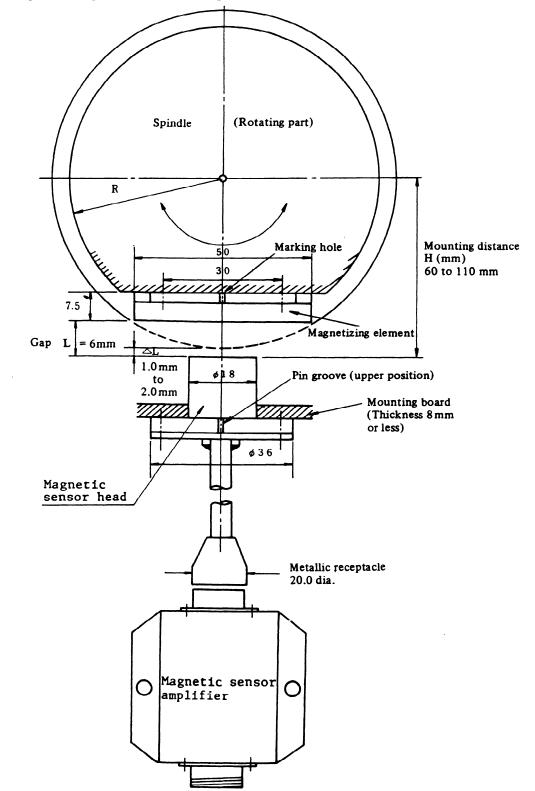



(f) External drawing of the magnetizing element for the magnetic sensor T

(4) Printed circuit board for controlling orientation (only for conventional types of models 6S to 26S)

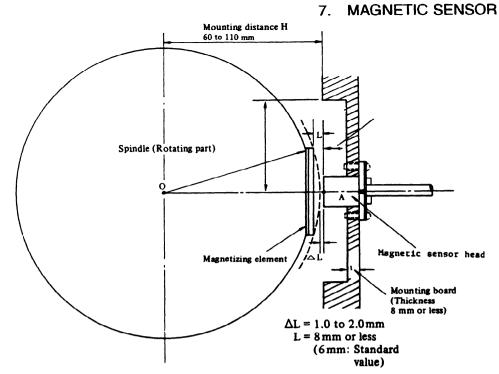
This board is used in units A06B-6063-H2XX.

- (5) Precautions on use
 - (a) As a spann element (RING-FEEDER) is used in the magnetizing element, use 4 bolts to conduct uniform tightening.


Conduct gradual repeated tightening in the order from 1 to 4.

(b) Relation between the discriminative standard hole and magnet polarity is shown in the diagram below.

(c) Use the 2 5.0 holes on the opposite side of the screw clamp of magnetic sensors Q, R, S, and T for the orientation positioning jig.


7.3 Magnetic Sensor Mounting Method

The following show magnetic sensor mounting examples Fig. 7.3(a), (b), (c), (d).

Fig. 7.3 (a) Magnetic sensor mounting example (1)

10 – 20

Note) Gap between mounting board and magnetizing element is 8 mm or more. Fig. 7.3 (b) Magnetic sensor mounting example (2) (When mounted on cylinder)

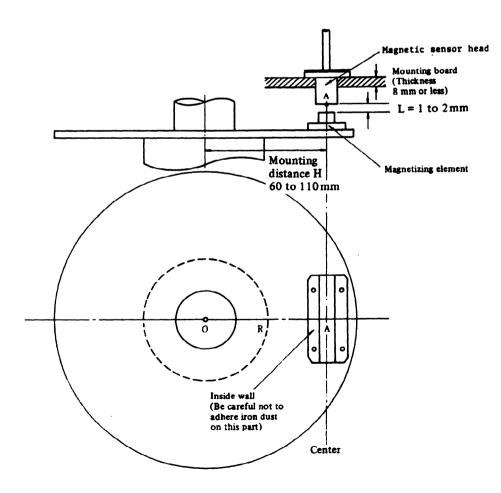
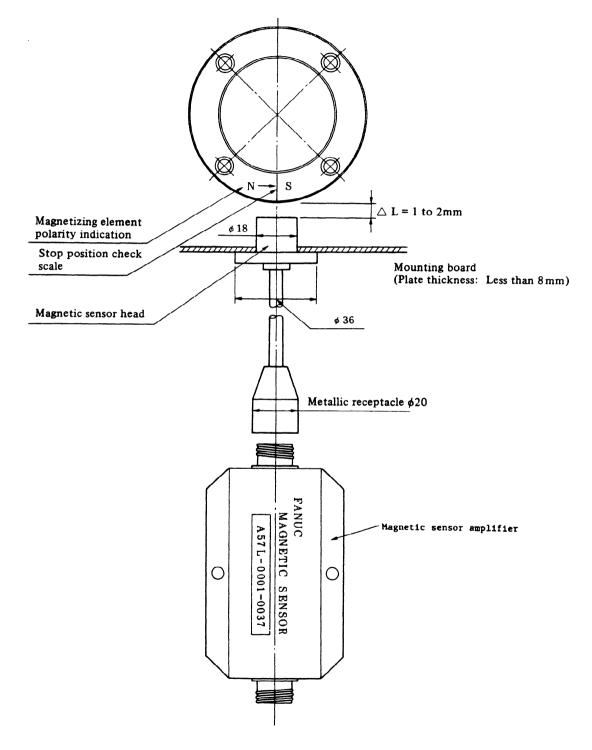
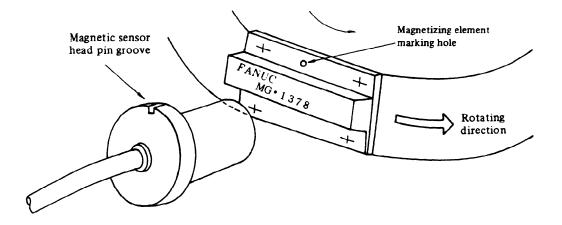


Fig. 7.3 (c) Magnetic sensor mounting example (3) (When mounted on disk)

Mounting method of magnetic sensor




Fig. 7.3 (d) Magnetic sensors mounting example (4) (Q, R, S, T)

(1) Magnetic sensor head pin groove

When a magnetizing element is mounted to the spindle of a machine tool, the polarity is produced between the magnetic element and the magnetic sensor, and the mounting direction differs according to the composition of the spindle (belt transmission, gear coupling, etc.)

For the connection shown in the magnetic sensor interface, arrange the relative positions of the magnetizing element marking hole and pin groove of the magnetic sensor as illustrated below.

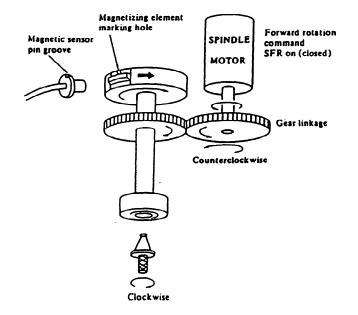
If this mounting is wrong, the spindle motor will repeatedly turn in the forward and reverse directions without being stopped.

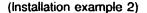
The spindle motor rotates counterclockwise (CCW) as viewed from the motor shaft by forward rotation command (signal SFR contact ON (closed), speed command VCMD (positive voltage). Arrange the magnetizing element marking hole and the magnetic sensor pin hole face to face by forward rotation command ON, so that the spindle motor rotates in the rotating direction specified in the figure.

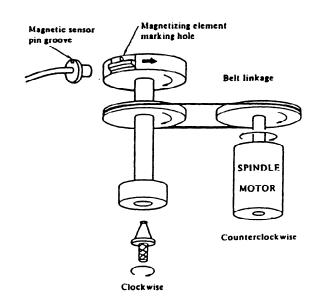
7.4 Cautions on Installation

 (a) Since the magnetizing element is mounted onto the rotating body of the spindle, be careful not to allow the magnetizing element to be detached by means of centrifugal force.
 Limit the circumferential speed of the magnetizing element to lower than 3770m/min (N, P type).

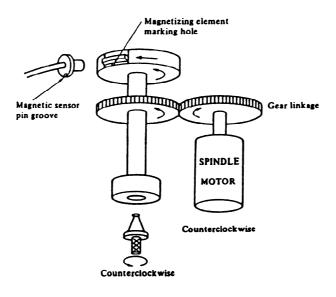
(Take the depth of the screw holes of M4 x 4 into consideration)

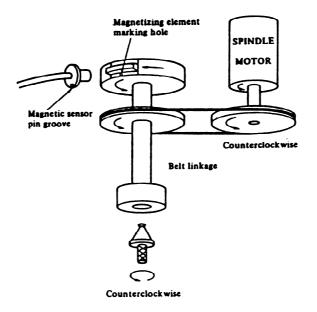

- (b) Mount the magnetic sensor amplifier as close to the sensor as possible.
- (c) Do not allow a magnetic field producing substance to be close to the magnetic sensor (stop position changes). Do not arrange any solenoid in the vicinity of the magnetizing element, in particular.
- (d) Be careful not to attach iron powder and other substances sensible to the magnetism to the magnetizing element.
- (e) If the spindle is provided with a built-in electromagnetic clutch for HIGH/LOW selection and other parts which may compose a magnetic loop, mount the magnetizing element on a nonmagnetic substance (aluminum, etc.) without fail.


The magnetic flux of the magnetizing element is zero at the stop position. However, if it is affected by a magnetic loop of the electromagnetic clutch, the magnetic flux is added normally when the magnetic clutch is turned on.

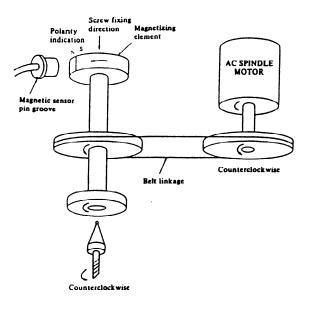

It should be carefully noted that if the clutch is turned on and off during the stop at the fixed position, the stop position changes due to a change of the steady-state magnetic flux.

- (f) Do not contaminate the magnetic sensor cable, sensor amplifier, and connecting cables with lubrication oil and cutting oil.
- (g) Mount the magnetizing element of the magnetic sensor onto the spindle directly. If the magnetizing element is mounted by gear coupling or spindle coupling, the repetition orientation accuracy may fluctuate by a backlash quantity between the spindle and the magnetizing element.

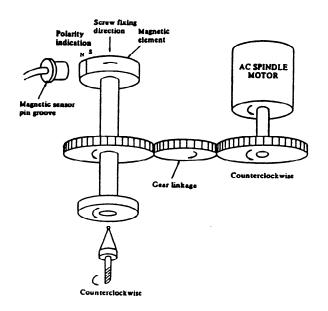

(Installation example 1)



(Installation example 3)

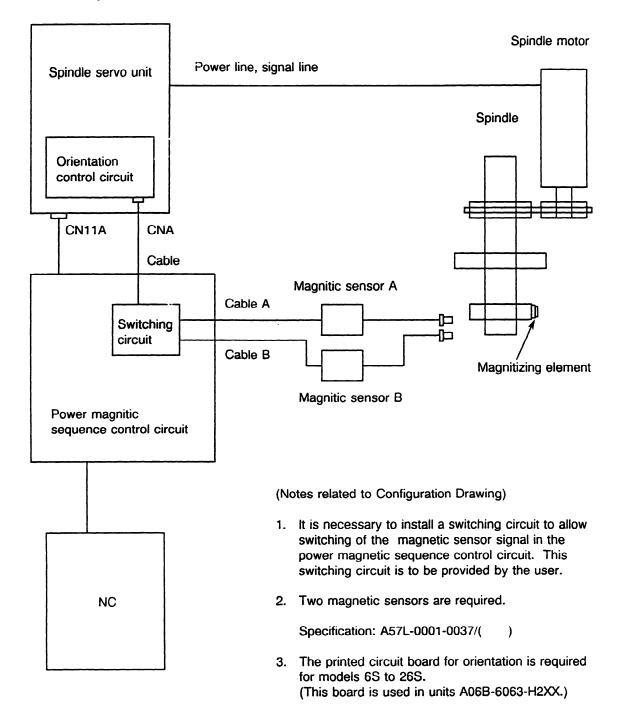


(Installation example 4)



7. MAGNETIC SENSOR

(Installation example 5)

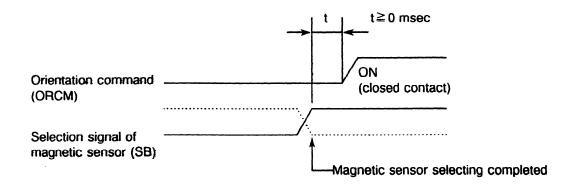

(Installation example 6)

8. TWO-MAGNETIC SENSOR ORIENTATION

According to this chapter, a spindle can be selectively stopped at two different orientated positions by two magnetic sensors.

8.1 Configuration

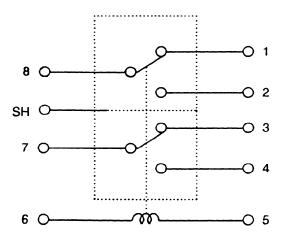
8.2 Change-over Circuit


The change-over circuit is shown in Fig. 8.2.2.

The MSA and LSA signals of the magnetic sensor A and B are transferred to the orientation circuit by shifting them within a change-over circuit.

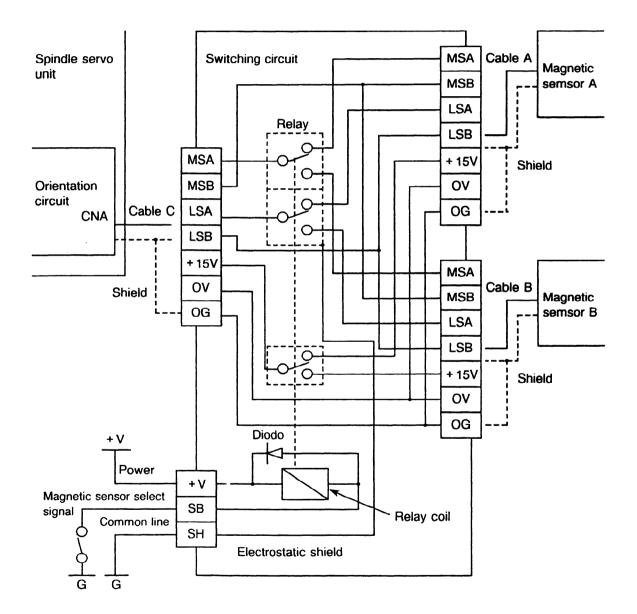
8.2.1 Selection signal of magnetic sensor (SB signal)

When the SB signal is set at HIGH LEVEL, the magnetic signal A is selected. When set at LOW LEVEL, the magnetic sensor B is selected by actuating the relay.


The power +V supplies voltage to the relay solenoid. For changing timing, select the selection signal of magnetic sensor (SB) so that it may be completed before turning ON the orientation command (ORCM) as in the figure below.

8.2.2 Signal change-over relay

(1) Contacting point type


Contacting points for two circuits are switching simultaneously with a single operation coil and contacting point between 1 and 2 (or point 3 and 4) may not be shorted out.

(Note 1) Numbers are given for conve-nience.(Note 2) The SH terminal is used for shielding statics.

- (2) Contact resistance : 100 mL or less
- (3) Capacity of contacting point :1 VA or greater
- (4) Switching life of contacting point : Select according to the actual frequency of use.

Switching circuit interface

Internal wiring of circuit should be as short as possible.

Fig. 8.2.2 Switching Circuit Interface

8.3 Fine Adjustment of Stop Position

In two-magnetic sensors type, design on machine side is required to enable fine adjustment for the other side stop position since fine adjustment for stop position can be done at only one side.

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.